Local Optimization of Quantum Circuits (Extended Version)
- URL: http://arxiv.org/abs/2502.19526v1
- Date: Wed, 26 Feb 2025 19:53:54 GMT
- Title: Local Optimization of Quantum Circuits (Extended Version)
- Authors: Jatin Arora, Mingkuan Xu, Sam Westrick, Pengyu Liu, Dantong Li, Yongshan Ding, Umut A. Acar,
- Abstract summary: We present optimization techniques for quantum programs that can offer both efficiency and quality guarantees.<n>We show that the local optimality notion can be attained by a cut-and-meld circuit optimization algorithm.
- Score: 2.247020913864586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in quantum architectures and computing have motivated the development of new optimizing compilers for quantum programs or circuits. Even though steady progress has been made, existing quantum optimization techniques remain asymptotically and practically inefficient and are unable to offer guarantees on the quality of the optimization. Because many global quantum circuit optimization problems belong to the complexity class QMA (the quantum analog of NP), it is not clear whether quality and efficiency guarantees can both be achieved. In this paper, we present optimization techniques for quantum programs that can offer both efficiency and quality guarantees. Rather than requiring global optimality, our approach relies on a form of local optimality that requires each and every segment of the circuit to be optimal. We show that the local optimality notion can be attained by a cut-and-meld circuit optimization algorithm. The idea behind the algorithm is to cut a circuit into subcircuits, optimize each subcircuit independently by using a specified "oracle" optimizer, and meld the subcircuits by optimizing across the cuts lazily as needed. We specify the algorithm and prove that it ensures local optimality. To prove efficiency, we show that, under some assumptions, the main optimization phase of the algorithm requires a linear number of calls to the oracle optimizer. We implement and evaluate the local-optimality approach to circuit optimization and compare with the state-of-the-art optimizers. The empirical results show that our cut-and-meld algorithm can outperform existing optimizers significantly, by more than an order of magnitude on average, while also slightly improving optimization quality. These results show that local optimality can be a relatively strong optimization criterion and can be attained efficiently.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - CONFIG: Constrained Efficient Global Optimization for Closed-Loop
Control System Optimization with Unmodeled Constraints [11.523746174066702]
The OPT algorithm is applied to optimize the closed-loop control performance of an unknown system with unmodeled constraints.
Results show that our algorithm can achieve performance competitive with the popular CEI (Constrained Expected Improvement) algorithm, which has no known optimality guarantee.
arXiv Detail & Related papers (2022-11-21T19:44:00Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
A competing, computationally more efficient, global optimization framework is optimistic optimization, which exploits prior knowledge about the geometry of the search space in form of a dissimilarity function.
We argue that there is a new research domain between geometric and probabilistic search, i.e. methods that run drastically faster than traditional Bayesian optimization, while retaining some of the crucial functionality of Bayesian optimization.
arXiv Detail & Related papers (2022-09-02T09:06:24Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
We propose an efficient parallelizable Bayesian optimization algorithm via Multi-objective ACquisition function Ensemble (MACE)
Our proposed algorithm can reduce the overall simulation time by up to 74 times compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15.
For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to 15 times compared to the weighted expected improvement based Bayesian optimization (WEIBO) approach, when the batch size is 15.
arXiv Detail & Related papers (2021-06-28T13:21:28Z) - Optimizing Optimizers: Regret-optimal gradient descent algorithms [9.89901717499058]
We study the existence, uniqueness and consistency of regret-optimal algorithms.
By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics.
We present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret.
arXiv Detail & Related papers (2020-12-31T19:13:53Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.