State-Agnostic Approach to Certifying Electron-Photon Entanglement in Electron Microscopy
- URL: http://arxiv.org/abs/2502.19536v1
- Date: Wed, 26 Feb 2025 20:18:04 GMT
- Title: State-Agnostic Approach to Certifying Electron-Photon Entanglement in Electron Microscopy
- Authors: Phila Rembold, Santiago Beltrán-Romero, Alexander Preimesberger, Sergei Bogdanov, Isobel C. Bicket, Nicolai Friis, Elizabeth Agudelo, Dennis Rätzel, Philipp Haslinger,
- Abstract summary: We present a protocol to certify entanglement between electrons and photons naturally arising from certain coherent cathodoluminescence processes.<n>Our work integrates photonic quantum information techniques with electron microscopy.<n>It establishes a foundation for entanglement-based imaging at the atomic scale, offering a potential pathway to reduce radiation exposure.
- Score: 33.7054351451505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transmission electron microscopes (TEMs) enable atomic-scale imaging and characterisation, driving advances across fields from materials science to biology. Quantum correlations, specifically entanglement, may provide a basis for novel hybrid sensing techniques to make TEMs compatible with sensitive samples prone to radiation damage. We present a protocol to certify entanglement between electrons and photons naturally arising from certain coherent cathodoluminescence processes. Using mutually unbiased bases in position and momentum, our method allows robust, state-agnostic entanglement verification and provides a lower bound on the entanglement of formation, enabling quantitative comparisons across platforms. Simulations under experiment-inspired conditions and preliminary experimental data highlight the feasibility of implementing this approach in modern TEM systems with optical specimen access. Our work integrates photonic quantum information techniques with electron microscopy. It establishes a foundation for entanglement-based imaging at the atomic scale, offering a potential pathway to reduce radiation exposure.
Related papers
- Experimental Verification of Electron-Photon Entanglement [39.58317527488534]
Entanglement, a key resource of emerging quantum technologies, describes correlations between particles that defy classical physics.
We demonstrate entanglement in electron-photon pairs generated via cathodoluminescence in a transmission electron microscope.
Our work paves the way for exploring quantum correlations in free-electron systems and their application to quantum-enhanced imaging techniques on the nanoscale.
arXiv Detail & Related papers (2025-04-17T17:58:50Z) - Spatially resolved photon statistics of general nanophotonic systems [0.0]
We present a novel method that provides access to photon statistics resolved in space and frequency in arbitrary electromagnetic environments.<n>Within the macroscopic QED framework, we develop a practical tool to compute electric field correlations for complex quantum systems.<n>We demonstrate the effectiveness and robustness of the proposed technique by studying the photon correlations of one and two emitters in close proximity to a plasmonic nanoparticles.
arXiv Detail & Related papers (2024-11-29T15:31:36Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms.
The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities.
These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations.
arXiv Detail & Related papers (2023-11-21T21:51:00Z) - Commensurate and incommensurate 1D interacting quantum systems [0.0]
Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes.
Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms.
arXiv Detail & Related papers (2023-05-05T18:49:43Z) - Free-Electron Ramsey-Type Interferometry for Enhanced Amplitude and
Phase imaging of Nearfields [0.0]
Photon-induced nearfield electron microscopy enables the detection of confined electric fields in illuminated nanostructures.
We present an algorithmic microscopy approach, achieving far superior nearfield imaging capabilities.
arXiv Detail & Related papers (2023-05-04T10:56:41Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Atom-light entanglement for precise field sensing in the optical domain [0.0]
We report a protocol that takes advantage of the strong and collective atom-light interactions in cavity QED systems for precise electric field sensing in the optical domain.
We show that it can provide between $10$-$20$dB of metro gain over the standard quantum limit in current cavity QED experiments operating with long-lived alkaline-earth atoms.
arXiv Detail & Related papers (2020-10-06T21:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.