Improving Representation Learning of Complex Critical Care Data with ICU-BERT
- URL: http://arxiv.org/abs/2502.19593v1
- Date: Wed, 26 Feb 2025 22:16:58 GMT
- Title: Improving Representation Learning of Complex Critical Care Data with ICU-BERT
- Authors: Ricardo Santos, André V. Carreiro, Xi Peng, Hugo Gamboa, Holger Fröhlich,
- Abstract summary: ICU-BERT is a transformer-based model pre-trained on the MIMIC-IV database.<n>It learns robust representations of complex ICU data with minimal preprocessing.<n>It either compares to or surpasses current performance benchmarks by leveraging fine-tuning.
- Score: 7.287023190850672
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The multivariate, asynchronous nature of real-world clinical data, such as that generated in Intensive Care Units (ICUs), challenges traditional AI-based decision-support systems. These often assume data regularity and feature independence and frequently rely on limited data scopes and manual feature engineering. The potential of generative AI technologies has not yet been fully exploited to analyze clinical data. We introduce ICU-BERT, a transformer-based model pre-trained on the MIMIC-IV database using a multi-task scheme to learn robust representations of complex ICU data with minimal preprocessing. ICU-BERT employs a multi-token input strategy, incorporating dense embeddings from a biomedical Large Language Model to learn a generalizable representation of complex and multivariate ICU data. With an initial evaluation of five tasks and four additional ICU datasets, ICU-BERT results indicate that ICU-BERT either compares to or surpasses current performance benchmarks by leveraging fine-tuning. By integrating structured and unstructured data, ICU-BERT advances the use of foundational models in medical informatics, offering an adaptable solution for clinical decision support across diverse applications.
Related papers
- Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.
We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Yet Another ICU Benchmark: A Flexible Multi-Center Framework for Clinical ML [0.7982607013768545]
Yet Another ICU Benchmark (YAIB) is a modular framework that allows researchers to define reproducible and comparable clinical ML experiments.
YAIB supports most open-access ICU datasets (MIMIC III/IV, eICU, HiRID, AUMCdb) and is easily adaptable to future ICU datasets.
We demonstrate that the choice of dataset, cohort definition, and preprocessing have a major impact on the prediction performance.
arXiv Detail & Related papers (2023-06-08T11:16:20Z) - MVMTnet: A Multi-variate Multi-modal Transformer for Multi-class
Classification of Cardiac Irregularities Using ECG Waveforms and Clinical
Notes [4.648677931378919]
Deep learning can be used to optimize diagnosis and patient monitoring for clinical-based applications.
For cardiovascular disease, one such condition where the rising number of patients increasingly outweighs the availability of medical resources in different parts of the world, a core challenge is the automated classification of various cardiac abnormalities.
The proposed novel multi-modal Transformer architecture would be able to accurately perform this task while demonstrating the cross-domain effectiveness of Transformers.
arXiv Detail & Related papers (2023-02-21T21:38:41Z) - Application of federated learning techniques for arrhythmia
classification using 12-lead ECG signals [0.11184789007828977]
This work uses a Federated Learning (FL) privacy-preserving methodology to train AI models over heterogeneous sets of high-definition ECG.
We demonstrated comparable performance to models trained using CL, IID, and non-IID approaches.
arXiv Detail & Related papers (2022-08-23T14:21:16Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on
High-resolution ICU Data [0.8418021941792283]
We aim to provide a benchmark covering a large spectrum of ICU-related tasks.
Using the HiRID dataset, we define multiple clinically relevant tasks developed in collaboration with clinicians.
We provide an in-depth analysis of current state-of-the-art sequence modeling methods, highlighting some limitations of deep learning approaches for this type of data.
arXiv Detail & Related papers (2021-11-16T15:06:42Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.