Revealing Treatment Non-Adherence Bias in Clinical Machine Learning Using Large Language Models
- URL: http://arxiv.org/abs/2502.19625v2
- Date: Sun, 20 Apr 2025 20:25:08 GMT
- Title: Revealing Treatment Non-Adherence Bias in Clinical Machine Learning Using Large Language Models
- Authors: Zhongyuan Liang, Arvind Suresh, Irene Y. Chen,
- Abstract summary: We investigate how treatment non-adherence introduces implicit bias that can distort both causal inference and predictive modeling.<n>Our findings demonstrate that this implicit bias can not only reverse estimated treatment effects, but also degrade model performance by up to 5%.<n>This highlights the importance of accounting for treatment non-adherence in developing responsible and equitable clinical machine learning systems.
- Score: 3.452725432283546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning systems trained on electronic health records (EHRs) increasingly guide treatment decisions, but their reliability depends on the critical assumption that patients follow the prescribed treatments recorded in EHRs. Using EHR data from 3,623 hypertension patients, we investigate how treatment non-adherence introduces implicit bias that can fundamentally distort both causal inference and predictive modeling. By extracting patient adherence information from clinical notes using a large language model (LLM), we identify 786 patients (21.7%) with medication non-adherence. We further uncover key demographic and clinical factors associated with non-adherence, as well as patient-reported reasons including side effects and difficulties obtaining refills. Our findings demonstrate that this implicit bias can not only reverse estimated treatment effects, but also degrade model performance by up to 5% while disproportionately affecting vulnerable populations by exacerbating disparities in decision outcomes and model error rates. This highlights the importance of accounting for treatment non-adherence in developing responsible and equitable clinical machine learning systems.
Related papers
- Attention-enabled Explainable AI for Bladder Cancer Recurrence Prediction [0.4369058206183195]
Non-muscle-invasive bladder cancer (NMIBC) recurrence rates soar as high as 70-80%.
Each recurrence triggers a cascade of invasive procedures, lifelong surveillance, and escalating healthcare costs.
Existing clinical prediction tools remain fundamentally flawed, often overestimating recurrence risk.
arXiv Detail & Related papers (2025-04-30T20:39:33Z) - Machine Learning-Based Prediction of ICU Readmissions in Intracerebral Hemorrhage Patients: Insights from the MIMIC Databases [0.0]
Intracerebral hemorrhage (ICH) is a life-risking condition characterized by bleeding within the brain parenchyma.<n>This study utilized the Medical Information Mart for Intensive Care (MIMIC-III and MIMIC-IV) databases to develop predictive models for ICU readmission risk.
arXiv Detail & Related papers (2025-01-02T10:19:27Z) - Access to care improves EHR reliability and clinical risk prediction model performance [1.5020330976600735]
Using an All of Us dataset of 134,513 participants, we investigate the effects of access to care on the medical machine learning pipeline.<n>Our findings reveal that patients with cost constrained or delayed care have worse EHR reliability as measured by patient self-reported conditions.<n>These findings provide the first large-scale evidence that healthcare access systematically affects both data reliability and clinical prediction performance.
arXiv Detail & Related papers (2024-12-10T18:00:53Z) - Causal machine learning for predicting treatment outcomes [75.13093479526151]
Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes.
Key benefit of causal ML is that it allows for estimating individualized treatment effects.
arXiv Detail & Related papers (2024-10-11T12:39:08Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Machine Learning Techniques for Predicting the Short-Term Outcome of
Resective Surgery in Lesional-Drug Resistance Epilepsy [1.759008116536278]
Seven dif-ferent categorization algorithms were used to analyze the data.
The support vector machine (SVM) with the linear kernel yielded 76.1% in terms of accuracy.
arXiv Detail & Related papers (2023-02-10T13:04:47Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
We introduce techniques to help bridge this gap between EBM and AI-based clinical models.
We propose a novel system that automatically retrieves patient-specific literature based on intensive care (ICU) patient information.
Our model is able to substantially boost predictive accuracy on three challenging tasks in comparison to strong recent baselines.
arXiv Detail & Related papers (2021-11-16T11:19:02Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.