Causal machine learning for predicting treatment outcomes
- URL: http://arxiv.org/abs/2410.08770v1
- Date: Fri, 11 Oct 2024 12:39:08 GMT
- Title: Causal machine learning for predicting treatment outcomes
- Authors: Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Alicia Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, Mihaela van der Schaar,
- Abstract summary: Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes.
Key benefit of causal ML is that it allows for estimating individualized treatment effects.
- Score: 75.13093479526151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes including efficacy and toxicity, thereby supporting the assessment and safety of drugs. A key benefit of causal ML is that it allows for estimating individualized treatment effects, so that clinical decision-making can be personalized to individual patient profiles. Causal ML can be used in combination with both clinical trial data and real-world data, such as clinical registries and electronic health records, but caution is needed to avoid biased or incorrect predictions. In this Perspective, we discuss the benefits of causal ML (relative to traditional statistical or ML approaches) and outline the key components and steps. Finally, we provide recommendations for the reliable use of causal ML and effective translation into the clinic.
Related papers
- Measuring Variable Importance in Individual Treatment Effect Estimation with High Dimensional Data [35.104681814241104]
Causal machine learning (ML) promises to provide powerful tools for estimating individual treatment effects.
ML methods still face the significant challenge of interpretability, which is crucial for medical applications.
We propose a new algorithm based on the Conditional Permutation Importance (CPI) method for statistically rigorous variable importance assessment.
arXiv Detail & Related papers (2024-08-23T11:44:07Z) - Estimating Causal Effects with Double Machine Learning -- A Method Evaluation [5.904095466127043]
We review one of the most prominent methods - "double/debiased machine learning" (DML)
Our findings indicate that the application of a suitably flexible machine learning algorithm within DML improves the adjustment for various nonlinear confounding relationships.
When estimating the effects of air pollution on housing prices, we find that DML estimates are consistently larger than estimates of less flexible methods.
arXiv Detail & Related papers (2024-03-21T13:21:33Z) - Interpretable Causal Inference for Analyzing Wearable, Sensor, and Distributional Data [62.56890808004615]
We develop an interpretable method for distributional data analysis that ensures trustworthy and robust decision-making.
We demonstrate ADD MALTS' utility by studying the effectiveness of continuous glucose monitors in mitigating diabetes risks.
arXiv Detail & Related papers (2023-12-17T00:42:42Z) - Causal prediction models for medication safety monitoring: The diagnosis
of vancomycin-induced acute kidney injury [0.282736966249181]
Current best practice for the retrospective diagnosis of adverse drug events (ADEs) in hospitalized patients relies on a full patient chart review and a formal causality assessment by medical experts.
Here, we pioneer a causal modeling approach using observational data to estimate a lower bound of the probability of causation (PC)
We apply our method to the clinically relevant use-case of vancomycin-induced acute kidney injury in intensive care patients.
arXiv Detail & Related papers (2023-11-15T17:29:24Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
We introduce an innovative projections-based method that seamlessly integrates clinical expertise as domain constraints.
We measure the distance of corrected data from the constraints defining a healthy range of patient data, resulting in a unique predictive metric we term as "trust-scores"
We show an AUROC of 0.865 and a precision of 0.922, that surpasses conventional ML models without such projections.
arXiv Detail & Related papers (2023-08-21T15:14:49Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Reinforcement learning and Bayesian data assimilation for model-informed
precision dosing in oncology [0.0]
Current strategies comprise model-informed dosing tables or are based on maximum a-posteriori estimates.
We propose three novel approaches for MIPD employing Bayesian data assimilation and/or reinforcement learning to control neutropenia.
These approaches have the potential to substantially reduce the incidence of life-threatening grade 4 and subtherapeutic grade 0 neutropenia.
arXiv Detail & Related papers (2020-06-01T16:38:27Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.