Preference Learning Unlocks LLMs' Psycho-Counseling Skills
- URL: http://arxiv.org/abs/2502.19731v1
- Date: Thu, 27 Feb 2025 03:50:25 GMT
- Title: Preference Learning Unlocks LLMs' Psycho-Counseling Skills
- Authors: Mian Zhang, Shaun M. Eack, Zhiyu Zoey Chen,
- Abstract summary: We create a preference dataset, PsychoCounsel-Preference, which contains 36k high-quality preference comparison pairs.<n>Our best-aligned model, PsychoCounsel-Llama3-8B, achieves an impressive win rate of 87% against GPT-4o.
- Score: 0.7510165488300369
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Applying large language models (LLMs) to assist in psycho-counseling is an emerging and meaningful approach, driven by the significant gap between patient needs and the availability of mental health support. However, current LLMs struggle to consistently provide effective responses to client speeches, largely due to the lack of supervision from high-quality real psycho-counseling data, whose content is typically inaccessible due to client privacy concerns. Furthermore, the quality of therapists' responses in available sessions can vary significantly based on their professional training and experience. Assessing the quality of therapists' responses remains an open challenge. In this work, we address these challenges by first proposing a set of professional and comprehensive principles to evaluate therapists' responses to client speeches. Using these principles, we create a preference dataset, PsychoCounsel-Preference, which contains 36k high-quality preference comparison pairs. This dataset aligns with the preferences of professional psychotherapists, providing a robust foundation for evaluating and improving LLMs in psycho-counseling. Experiments on reward modeling and preference learning demonstrate that PsychoCounsel-Preference is an excellent resource for LLMs to acquire essential skills for responding to clients in a counseling session. Our best-aligned model, PsychoCounsel-Llama3-8B, achieves an impressive win rate of 87% against GPT-4o. We release PsychoCounsel-Preference, PsychoCounsel-Llama3-8B and the reward model PsychoCounsel Llama3-8B-Reward to facilitate the research of psycho-counseling with LLMs at: https://hf.co/Psychotherapy-LLM.
Related papers
- AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
Traditional in-person psychological counseling remains primarily niche, often chosen by individuals with psychological issues.<n>Online automated counseling offers a potential solution for those hesitant to seek help due to feelings of shame.
arXiv Detail & Related papers (2025-01-16T09:57:12Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
We propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance.
We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions.
Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios
arXiv Detail & Related papers (2024-10-17T04:52:57Z) - Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT [6.812247730094931]
We investigate the potential and limitations of using large language models (LLMs) as providers of evidence-based therapy.
We replicated publicly accessible mental health conversations rooted in Cognitive Behavioral Therapy (CBT) to compare session dynamics and counselor's CBT-based behaviors.
Our findings show that the peer sessions are characterized by empathy, small talk, therapeutic alliance, and shared experiences but often exhibit therapist drift.
arXiv Detail & Related papers (2024-09-03T19:19:13Z) - Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions [12.455050661682051]
We propose a framework that employs two large language models (LLMs) via role-playing for simulating counselor-client interactions.
Our framework involves two LLMs, one acting as a client equipped with a specific and real-life user profile and the other playing the role of an experienced counselor.
arXiv Detail & Related papers (2024-08-28T13:29:59Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
We create a multi-turn dialogue dataset that emulates real-life interactions using the goal-oriented and structured approach of Cognitive Behavioral Therapy (CBT)
We benchmark against established psychological criteria used to evaluate real counseling sessions, ensuring alignment with expert evaluations.
Experimental results demonstrate that Camel, a model trained with Cactus, outperforms other models in counseling skills, highlighting its effectiveness and potential as a counseling agent.
arXiv Detail & Related papers (2024-07-03T13:41:31Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - A Computational Framework for Behavioral Assessment of LLM Therapists [7.665475687919995]
Large language models (LLMs) like ChatGPT have increased interest in their use as therapists to address mental health challenges.<n>We propose BOLT, a proof-of-concept computational framework to systematically assess the conversational behavior of LLM therapists.
arXiv Detail & Related papers (2024-01-01T17:32:28Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using
PsychoBench [83.41621219298489]
We propose a framework, PsychoBench, for evaluating diverse psychological aspects of Large Language Models (LLMs)
PsychoBench classifies these scales into four distinct categories: personality traits, interpersonal relationships, motivational tests, and emotional abilities.
We employ a jailbreak approach to bypass the safety alignment protocols and test the intrinsic natures of LLMs.
arXiv Detail & Related papers (2023-10-02T17:46:09Z) - "Am I A Good Therapist?" Automated Evaluation Of Psychotherapy Skills
Using Speech And Language Technologies [38.726068038788384]
We describe our platform and its performance, using a dataset of more than 5,000 recordings.
Our system gives comprehensive feedback to the therapist, including information about the dynamics of the session.
We are confident that a widespread use of automated psychotherapy rating tools in the near future will augment experts' capabilities.
arXiv Detail & Related papers (2021-02-22T18:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.