Optimized quantum entanglement network enabled by a state-multiplexing quantum light source
- URL: http://arxiv.org/abs/2502.19740v1
- Date: Thu, 27 Feb 2025 04:07:28 GMT
- Title: Optimized quantum entanglement network enabled by a state-multiplexing quantum light source
- Authors: Yun-Ru Fan, Yue Luo, Kai Guo, Jin-Peng Wu, Hong Zeng, Guang-Wei Deng, You Wang, Hai-Zhi Song, Zhen Wang, Li-Xing You, Guang-Can Guo, Qiang Zhou,
- Abstract summary: We propose an optimized scheme for the wavelength division multiplexing entanglement-based network using a state-multiplexing quantum light source.<n>A total secure key rate of 1946.9 bps is obtained by performing the BBM92 protocol with the distributed state.
- Score: 11.30646901300988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fully connected quantum network with a wavelength division multiplexing architecture plays an increasingly pivotal role in quantum information technology. With such architecture, an entanglement-based network has been demonstrated in which an entangled photon-pair source distributes quantum entanglement resources to many users. Despite these remarkable advances, the scalability of the architecture could be constrained by the finite spectrum resource, where O(N^2)wavelength channels are needed to connect N users, thus impeding further progress in real-world scenarios. Here, we propose an optimized scheme for the wavelength division multiplexing entanglement-based network using a state-multiplexing quantum light source. With a dual-pump configuration, the feasibility of our approach is demonstrated by generating state-multiplexing photon pairs at multiple wavelength channels with a silicon nitride microring resonator chip. In our demonstration, we establish a fully connected graph between four users with six wavelength channels - saving half of which without sacrificing functionality and performance of the secure communication. A total asymptotic secure key rate of 1946.9 bps is obtained by performing the BBM92 protocol with the distributed state. The network topology of our method has great potential for developing a scalable quantum network with significantly minimized infrastructure requirements.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Metropolitan-scale heralded entanglement of solid-state qubits [0.0]
We report on heralded entanglement between two independently operated quantum network nodes separated by 10km.
We minimize the effects of fiber photon loss by quantum frequency conversion of the qubit-stabilized photons to the telecom L-band.
We demonstrate the delivery of a predefined entangled state on the nodes irrespective of the heralding detection pattern.
arXiv Detail & Related papers (2024-04-04T18:00:01Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Realizing an entanglement-based multi-user quantum network with
integrated photonics [7.023079683052248]
Quantum network facilitates the secure transmission of information between different users.
We develop an energy-time entanglement-based dense wavelength division multiplexed network based on an integrated silicon nitride micro-ring resonator.
arXiv Detail & Related papers (2022-06-20T14:06:19Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Flexible entanglement-distribution network with an AlGaAs chip for
secure communications [0.0]
We demonstrate reconfigurable entanglement distribution between up to 8 users in a resource-optimized quantum network topology.
As a benchmark application we use quantum key distribution, and show low error and high secret key generation rates.
Together with the potential of our semiconductor source for distributing secret keys over a 60 nm bandwidth with commercial multiplexing technology, these results offer a promising route to the deployment of scalable quantum network architectures.
arXiv Detail & Related papers (2021-02-09T14:13:07Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.