論文の概要: PolyPrompt: Automating Knowledge Extraction from Multilingual Language Models with Dynamic Prompt Generation
- arxiv url: http://arxiv.org/abs/2502.19756v1
- Date: Thu, 27 Feb 2025 04:41:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:58:58.619127
- Title: PolyPrompt: Automating Knowledge Extraction from Multilingual Language Models with Dynamic Prompt Generation
- Title(参考訳): PolyPrompt:動的プロンプト生成を伴う多言語言語モデルからの知識抽出を自動化する
- Authors: Nathan Roll,
- Abstract要約: 大規模言語モデル(LLM)の多言語機能を強化するための新しいパラメータ効率フレームワークであるPolyPromptを紹介する。
提案手法では,各言語に対するトリガトークンの集合を勾配に基づく探索により学習し,入力クエリの言語を識別し,推論中にプロンプトにプリコンパイルされた対応するトリガトークンを選択する。
我々は20億のパラメータモデルで実験を行い、15の類型的および資源的多様言語にわたる世界MMLUベンチマークで評価を行い、ナイーブおよびトランスレーショナル・ピペリンベースラインと比較して3.7%-19.9%の精度向上を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) showcase increasingly impressive English benchmark scores, however their performance profiles remain inconsistent across multilingual settings. To address this gap, we introduce PolyPrompt, a novel, parameter-efficient framework for enhancing the multilingual capabilities of LLMs. Our method learns a set of trigger tokens for each language through a gradient-based search, identifying the input query's language and selecting the corresponding trigger tokens which are prepended to the prompt during inference. We perform experiments on two ~1 billion parameter models, with evaluations on the global MMLU benchmark across fifteen typologically and resource diverse languages, demonstrating accuracy gains of 3.7%-19.9% compared to naive and translation-pipeline baselines.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ますます印象的な英語ベンチマークスコアを示すが、そのパフォーマンスプロファイルは多言語設定では矛盾しない。
このギャップに対処するために、LLMの多言語機能を強化するための新しいパラメータ効率フレームワークであるPolyPromptを紹介する。
提案手法では,各言語に対するトリガトークンの集合を勾配に基づく探索により学習し,入力クエリの言語を識別し,推論中にプロンプトにプリコンパイルされた対応するトリガトークンを選択する。
我々は2つの10億のパラメータモデルで実験を行い、グローバルMMLUベンチマークで15の類型的および資源的多様言語にまたがって評価を行い、3.7%-19.9%の精度向上を示した。
関連論文リスト
- Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following [51.18383180774354]
Multi-IFは,大規模言語モデルの習熟度を多元的および多言語的指示に従って評価するための新しいベンチマークである。
Multi-IF 上での14の最先端 LLM の評価結果から,既存のベンチマークよりもはるかに難しい課題であることが判明した。
非ラテン文字(ヒンディー語、ロシア語、中国語)を持つ言語は一般的に高いエラー率を示し、モデルの多言語能力の潜在的な制限を示唆している。
論文 参考訳(メタデータ) (2024-10-21T00:59:47Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Zero-shot Cross-lingual Transfer of Prompt-based Tuning with a Unified
Multilingual Prompt [98.26682501616024]
我々はUniPromptと呼ばれるすべての言語に対して統一的なプロンプトを使用する新しいモデルを提案する。
統一的なプロンプトは多言語 PLM による計算であり、言語に依存しない表現を生成する。
提案手法は、異なる言語間で強いベースラインを著しく上回ることができる。
論文 参考訳(メタデータ) (2022-02-23T11:57:52Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。