論文の概要: Snowball Adversarial Attack on Traffic Sign Classification
- arxiv url: http://arxiv.org/abs/2502.19757v1
- Date: Thu, 27 Feb 2025 04:42:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:54:04.739978
- Title: Snowball Adversarial Attack on Traffic Sign Classification
- Title(参考訳): 道路標識分類における雪崩対策
- Authors: Anthony Etim, Jakub Szefer,
- Abstract要約: 敵の攻撃の戦略は、はっきりと見えるが人間を混乱させない摂動を作り出すことである。
この研究は、道路標識認識の文脈で、雪だるま対策攻撃(Snowball Adversarial Attack)を通じてその例を示す。
評価の結果,Snowball Adversarial Attackは様々な画像に対して堅牢であり,最先端の交通信号認識アルゴリズムを混乱させることができることがわかった。
- 参考スコア(独自算出の注目度): 10.353892677735212
- License:
- Abstract: Adversarial attacks on machine learning models often rely on small, imperceptible perturbations to mislead classifiers. Such strategy focuses on minimizing the visual perturbation for humans so they are not confused, and also maximizing the misclassification for machine learning algorithms. An orthogonal strategy for adversarial attacks is to create perturbations that are clearly visible but do not confuse humans, yet still maximize misclassification for machine learning algorithms. This work follows the later strategy, and demonstrates instance of it through the Snowball Adversarial Attack in the context of traffic sign recognition. The attack leverages the human brain's superior ability to recognize objects despite various occlusions, while machine learning algorithms are easily confused. The evaluation shows that the Snowball Adversarial Attack is robust across various images and is able to confuse state-of-the-art traffic sign recognition algorithm. The findings reveal that Snowball Adversarial Attack can significantly degrade model performance with minimal effort, raising important concerns about the vulnerabilities of deep neural networks and highlighting the necessity for improved defenses for image recognition machine learning models.
- Abstract(参考訳): 機械学習モデルに対する敵対的攻撃は、しばしば誤解を招く分類器に対して、小さく、知覚できない摂動に依存している。
このような戦略は、人間の視覚摂動を最小限に抑え、混乱しないようにし、機械学習アルゴリズムの誤分類を最大化する。
敵対的攻撃の直交戦略は、明らかに見えるが人間を混乱させることなく、機械学習アルゴリズムの誤分類を最大化する摂動を作り出すことである。
この研究は、後の戦略に従っており、道路標識認識の文脈で、雪だるま対策攻撃(Snowball Adversarial Attack)を通じてその例を示す。
この攻撃は、様々な閉塞にもかかわらず物体を認識する人間の脳の優れた能力を活用し、機械学習アルゴリズムは容易に混乱する。
評価の結果,Snowball Adversarial Attackは様々な画像に対して堅牢であり,最先端の交通信号認識アルゴリズムを混乱させることができることがわかった。
その結果、Snowball Adversarial Attackは最小限の努力でモデルパフォーマンスを著しく低下させ、ディープニューラルネットワークの脆弱性に対する重要な懸念を高め、画像認識機械学習モデルに対する防御の改善の必要性を強調した。
関連論文リスト
- Undermining Image and Text Classification Algorithms Using Adversarial Attacks [0.0]
本研究は,各種機械学習モデルを訓練し,GANとSMOTEを用いてテキスト分類モデルへの攻撃を目的とした追加データポイントを生成することにより,そのギャップを解消する。
実験の結果,分類モデルの重大な脆弱性が明らかとなった。特に,攻撃後の最上位のテキスト分類モデルの精度が20%低下し,顔認識精度が30%低下した。
論文 参考訳(メタデータ) (2024-11-03T18:44:28Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adv-Attribute (Adv-Attribute) は、顔認証に対する不明瞭で伝達可能な攻撃を生成するように設計されている。
FFHQとCelebA-HQデータセットの実験は、提案されたAdv-Attributeメソッドが最先端の攻撃成功率を達成することを示している。
論文 参考訳(メタデータ) (2022-10-13T09:56:36Z) - An integrated Auto Encoder-Block Switching defense approach to prevent
adversarial attacks [0.0]
逆入力サンプルに対する最先端のニューラルネットワークの脆弱性は、劇的に増大している。
本稿では,自動エンコーダとブロックスイッチングアーキテクチャを組み合わせたディフェンスアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-11T10:58:24Z) - Query Efficient Decision Based Sparse Attacks Against Black-Box Deep
Learning Models [9.93052896330371]
本研究では,進化型アルゴリズムであるSparseEvoを開発し,畳み込み型深層ニューラルネットワークと視覚変換器の両方に対して評価する。
SparseEvoは、未ターゲットとターゲットの両方の攻撃に対して、最先端のスパース攻撃よりもはるかに少ないモデルクエリを必要とする。
重要なことは、クエリ効率のよいSparseEvoと意思決定ベースの攻撃は、一般的に、デプロイされたシステムの安全性に関する新しい疑問を提起する。
論文 参考訳(メタデータ) (2022-01-31T21:10:47Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Attack to Fool and Explain Deep Networks [59.97135687719244]
対人摂動における人為的意味のパターンの証拠を提供することによって、私たちは逆転する。
我々の主な貢献は、その後視覚モデルを理解するためのツールに変換される、新しい実用的対人攻撃である。
論文 参考訳(メタデータ) (2021-06-20T03:07:36Z) - Robust SleepNets [7.23389716633927]
本研究では,運転者の脱着や運転者の眠気にかかわる事故を防止するために,視線閉鎖性検出について検討した。
目の閉鎖度を検出するための2つのモデル:目の画像の最初のモデルと顔の画像の2番目のモデル。
我々は,予測グラディエント Descent,Fast Gradient Sign,DeepFool メソッドでモデルに逆襲し,逆襲成功率を報告する。
論文 参考訳(メタデータ) (2021-02-24T20:48:13Z) - A Generative Model based Adversarial Security of Deep Learning and
Linear Classifier Models [0.0]
我々は,オートエンコーダモデルを用いた機械学習モデルに対する敵攻撃の軽減手法を提案する。
機械学習モデルに対する敵対的攻撃の背後にある主な考え方は、トレーニングされたモデルを操作することによって誤った結果を生成することである。
また、ディープニューラルネットワークから従来のアルゴリズムに至るまで、様々な攻撃手法に対するオートエンコーダモデルの性能についても紹介した。
論文 参考訳(メタデータ) (2020-10-17T17:18:17Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
我々は、高ビット平面の情報に基づいて粗い印象を形成するためにネットワークを訓練し、低ビット平面を用いて予測を洗練させる。
異なる量子化画像間で学習した表現に一貫性を付与することにより、ネットワークの対角的ロバスト性が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-04-01T09:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。