論文の概要: Obtaining Example-Based Explanations from Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2502.19768v1
- Date: Thu, 27 Feb 2025 05:10:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:58:39.908331
- Title: Obtaining Example-Based Explanations from Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークによる実例に基づく説明
- Authors: Genghua Dong, Henrik Boström, Michalis Vazirgiannis, Roman Bresson,
- Abstract要約: EBE-DNNは、非常に集中した例の属性を提供することができる。
埋め込みに使用するレイヤの選択は、その結果の正確性に大きな影響を与える可能性がある。
- 参考スコア(独自算出の注目度): 18.708235771482205
- License:
- Abstract: Most techniques for explainable machine learning focus on feature attribution, i.e., values are assigned to the features such that their sum equals the prediction. Example attribution is another form of explanation that assigns weights to the training examples, such that their scalar product with the labels equals the prediction. The latter may provide valuable complementary information to feature attribution, in particular in cases where the features are not easily interpretable. Current example-based explanation techniques have targeted a few model types only, such as k-nearest neighbors and random forests. In this work, a technique for obtaining example-based explanations from deep neural networks (EBE-DNN) is proposed. The basic idea is to use the deep neural network to obtain an embedding, which is employed by a k-nearest neighbor classifier to form a prediction; the example attribution can hence straightforwardly be derived from the latter. Results from an empirical investigation show that EBE-DNN can provide highly concentrated example attributions, i.e., the predictions can be explained with few training examples, without reducing accuracy compared to the original deep neural network. Another important finding from the empirical investigation is that the choice of layer to use for the embeddings may have a large impact on the resulting accuracy.
- Abstract(参考訳): 説明可能な機械学習のほとんどの技術は、特徴帰属に焦点を当て、すなわち、その合計が予測に等しいような特徴に値が割り当てられる。
例 属性は、ラベル付きスカラー積が予測に等しいように、トレーニング例に重みを割り当てる別の説明形式である。
後者は、特に特徴が容易に解釈できない場合に、特徴属性に対する貴重な補完情報を提供する。
現在の例に基づく説明手法は、k-アネレスト近隣やランダム森林など、いくつかのモデルタイプのみを対象としている。
本研究では,ディープニューラルネットワーク(EBE-DNN)からサンプルベースの説明を得る手法を提案する。
基本的な考え方は、深層ニューラルネットワークを用いて埋め込みを得ることであり、これはk-ネアレスト近傍の分類器によって予測を形成する。
実験的な調査の結果、EBE-DNNは、元のディープニューラルネットワークと比較して精度を低下させることなく、予測を少数のトレーニング例で説明することが可能である。
実験的な調査から得られたもう1つの重要な発見は、埋め込みに使用する層の選択が、その結果の正確性に大きな影響を与える可能性があることである。
関連論文リスト
- Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Look beyond labels: Incorporating functional summary information in
Bayesian neural networks [11.874130244353253]
予測確率に関する要約情報を組み込むための簡単な手法を提案する。
利用可能な要約情報は、拡張データとして組み込まれ、ディリクレプロセスでモデル化される。
本稿では,タスクの難易度やクラス不均衡をモデルに示す方法について述べる。
論文 参考訳(メタデータ) (2022-07-04T07:06:45Z) - Out-of-Distribution Example Detection in Deep Neural Networks using
Distance to Modelled Embedding [0.0]
予測時間における分布外例の検出に使用するDIME(Distance to Modelled Embedding)を提案する。
線形超平面として特徴空間に埋め込まれたトレーニングセットを近似することにより、単純で教師なし、高性能で計算効率の良い手法を導出する。
論文 参考訳(メタデータ) (2021-08-24T12:28:04Z) - Locally Sparse Networks for Interpretable Predictions [7.362415721170984]
本稿では,局所的な疎度をサンプル固有のゲーティング機構を用いて学習する,局所スパースニューラルネットワークのトレーニングフレームワークを提案する。
サンプル固有の間隔は、テキスト予測ネットワークで予測され、テキスト予測ネットワークとタンデムでトレーニングされる。
本手法は,1インスタンスあたりの機能が少ないターゲット関数の予測において,最先端のモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T15:46:50Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
本稿では,ランダムな成分が予測器の滑らかさを向上できるという観測によって動機づけられた敵の例を検出するための新しい枠組みを提案する。
本稿では,BATer を略した新しいベイズ対向型サンプル検出器を提案し,対向型サンプル検出の性能を向上させる。
論文 参考訳(メタデータ) (2021-05-18T15:51:24Z) - An Empirical Comparison of Instance Attribution Methods for NLP [62.63504976810927]
本研究は,トレーニングサンプルの重要性に関して,異なるインスタンス属性が一致した度合いを評価する。
単純な検索メソッドは、グラデーションベースの方法によって識別されたものと異なるトレーニングインスタンスを生成する。
論文 参考訳(メタデータ) (2021-04-09T01:03:17Z) - ECINN: Efficient Counterfactuals from Invertible Neural Networks [80.94500245955591]
本稿では, 画像分類における可逆ニューラルネットワークの生成能力を利用して, 対実例を効率的に生成する手法ECINNを提案する。
ECINNはクローズドフォーム表現を持ち、たった2つの評価の時点で反事実を生成する。
私たちの実験では、ECINNがクラス依存イメージ領域を変更して、反現実の知覚的および予測的クラスを変更する方法を示す。
論文 参考訳(メタデータ) (2021-03-25T09:23:24Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
我々は,試行錯誤の予測に例ベースの説明を与えることのできる,プロトタイプベースの学生ネットワークのより広範な採用を論じる。
類似カーネル以外のプロトタイプベースのネットワークは,分類精度を損なうことなく,有意義な説明と有望な外乱検出結果が得られることを示す。
論文 参考訳(メタデータ) (2020-11-11T05:58:17Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z) - Sampling Prediction-Matching Examples in Neural Networks: A
Probabilistic Programming Approach [9.978961706999833]
本稿では,確率的プログラミングを用いた分類器の予測レベルセットの探索について考察する。
我々は,予測器が同一の特定の予測信頼度を持つ例のセットとして,予測レベルを定義した。
合成データセットとMNISTを用いた実験により,本手法を実証する。
論文 参考訳(メタデータ) (2020-01-09T15:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。