Obtaining Example-Based Explanations from Deep Neural Networks
- URL: http://arxiv.org/abs/2502.19768v1
- Date: Thu, 27 Feb 2025 05:10:48 GMT
- Title: Obtaining Example-Based Explanations from Deep Neural Networks
- Authors: Genghua Dong, Henrik Boström, Michalis Vazirgiannis, Roman Bresson,
- Abstract summary: EBE-DNN can provide highly concentrated example attributions, i.e., the predictions can be explained with few training examples.<n>The choice of layer to use for the embeddings may have a large impact on the resulting accuracy.
- Score: 18.708235771482205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most techniques for explainable machine learning focus on feature attribution, i.e., values are assigned to the features such that their sum equals the prediction. Example attribution is another form of explanation that assigns weights to the training examples, such that their scalar product with the labels equals the prediction. The latter may provide valuable complementary information to feature attribution, in particular in cases where the features are not easily interpretable. Current example-based explanation techniques have targeted a few model types only, such as k-nearest neighbors and random forests. In this work, a technique for obtaining example-based explanations from deep neural networks (EBE-DNN) is proposed. The basic idea is to use the deep neural network to obtain an embedding, which is employed by a k-nearest neighbor classifier to form a prediction; the example attribution can hence straightforwardly be derived from the latter. Results from an empirical investigation show that EBE-DNN can provide highly concentrated example attributions, i.e., the predictions can be explained with few training examples, without reducing accuracy compared to the original deep neural network. Another important finding from the empirical investigation is that the choice of layer to use for the embeddings may have a large impact on the resulting accuracy.
Related papers
- Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - Look beyond labels: Incorporating functional summary information in
Bayesian neural networks [11.874130244353253]
We present a simple approach to incorporate summary information about the predicted probability.
The available summary information is incorporated as augmented data and modeled with a Dirichlet process.
We show how the method can inform the model about task difficulty or class imbalance.
arXiv Detail & Related papers (2022-07-04T07:06:45Z) - Out-of-Distribution Example Detection in Deep Neural Networks using
Distance to Modelled Embedding [0.0]
We present Distance to Modelled Embedding (DIME) that we use to detect out-of-distribution examples during prediction time.
By approximating the training set embedding into feature space as a linear hyperplane, we derive a simple, unsupervised, highly performant and computationally efficient method.
arXiv Detail & Related papers (2021-08-24T12:28:04Z) - Locally Sparse Networks for Interpretable Predictions [7.362415721170984]
We propose a framework for training locally sparse neural networks where the local sparsity is learned via a sample-specific gating mechanism.
The sample-specific sparsity is predicted via a textitgating network, which is trained in tandem with the textitprediction network.
We demonstrate that our method outperforms state-of-the-art models when predicting the target function with far fewer features per instance.
arXiv Detail & Related papers (2021-06-11T15:46:50Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
We propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors.
We propose a novel Bayesian adversarial example detector, short for BATer, to improve the performance of adversarial example detection.
arXiv Detail & Related papers (2021-05-18T15:51:24Z) - An Empirical Comparison of Instance Attribution Methods for NLP [62.63504976810927]
We evaluate the degree to which different potential instance attribution agree with respect to the importance of training samples.
We find that simple retrieval methods yield training instances that differ from those identified via gradient-based methods.
arXiv Detail & Related papers (2021-04-09T01:03:17Z) - ECINN: Efficient Counterfactuals from Invertible Neural Networks [80.94500245955591]
We propose a method, ECINN, that utilizes the generative capacities of invertible neural networks for image classification to generate counterfactual examples efficiently.
ECINN has a closed-form expression and generates a counterfactual in the time of only two evaluations.
Our experiments demonstrate how ECINN alters class-dependent image regions to change the perceptual and predicted class of the counterfactuals.
arXiv Detail & Related papers (2021-03-25T09:23:24Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
We argue for a broader adoption of prototype-based student networks capable of providing an example-based explanation for their prediction.
We show that our prototype-based networks beyond similarity kernels deliver meaningful explanations and promising outlier detection results without compromising classification accuracy.
arXiv Detail & Related papers (2020-11-11T05:58:17Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Sampling Prediction-Matching Examples in Neural Networks: A
Probabilistic Programming Approach [9.978961706999833]
We consider the problem of exploring the prediction level sets of a classifier using probabilistic programming.
We define a prediction level set to be the set of examples for which the predictor has the same specified prediction confidence.
We demonstrate this technique with experiments on a synthetic dataset and MNIST.
arXiv Detail & Related papers (2020-01-09T15:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.