論文の概要: UIFace: Unleashing Inherent Model Capabilities to Enhance Intra-Class Diversity in Synthetic Face Recognition
- arxiv url: http://arxiv.org/abs/2502.19803v1
- Date: Thu, 27 Feb 2025 06:22:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:57:37.538336
- Title: UIFace: Unleashing Inherent Model Capabilities to Enhance Intra-Class Diversity in Synthetic Face Recognition
- Title(参考訳): UIFace: シンセティック顔認識におけるクラス内の多様性を高めるために、一貫性のあるモデル機能を公開する
- Authors: Xiao Lin, Yuge Huang, Jianqing Xu, Yuxi Mi, Shuigeng Zhou, Shouhong Ding,
- Abstract要約: 顔認識(FR)はコンピュータビジョンにおいて最も重要な応用の1つである。
UIFaceとして短縮された合成顔認識のためのクラス内多様性を高めるフレームワークを提案する。
実験結果から,本手法は従来の手法に比べてトレーニングデータが少なく,合成データセットの約半分の規模で大幅に上回っていることがわかった。
- 参考スコア(独自算出の注目度): 42.86969216015855
- License:
- Abstract: Face recognition (FR) stands as one of the most crucial applications in computer vision. The accuracy of FR models has significantly improved in recent years due to the availability of large-scale human face datasets. However, directly using these datasets can inevitably lead to privacy and legal problems. Generating synthetic data to train FR models is a feasible solution to circumvent these issues. While existing synthetic-based face recognition methods have made significant progress in generating identity-preserving images, they are severely plagued by context overfitting, resulting in a lack of intra-class diversity of generated images and poor face recognition performance. In this paper, we propose a framework to Unleash Inherent capability of the model to enhance intra-class diversity for synthetic face recognition, shortened as UIFace. Our framework first trains a diffusion model that can perform sampling conditioned on either identity contexts or a learnable empty context. The former generates identity-preserving images but lacks variations, while the latter exploits the model's intrinsic ability to synthesize intra-class-diversified images but with random identities. Then we adopt a novel two-stage sampling strategy during inference to fully leverage the strengths of both types of contexts, resulting in images that are diverse as well as identitypreserving. Moreover, an attention injection module is introduced to further augment the intra-class variations by utilizing attention maps from the empty context to guide the sampling process in ID-conditioned generation. Experiments show that our method significantly surpasses previous approaches with even less training data and half the size of synthetic dataset. The proposed UIFace even achieves comparable performance with FR models trained on real datasets when we further increase the number of synthetic identities.
- Abstract(参考訳): 顔認識(FR)はコンピュータビジョンにおいて最も重要な応用の1つである。
FRモデルの精度は、大規模な人間の顔データセットが利用可能であるため、近年大幅に改善されている。
しかし、これらのデータセットを直接使用すると、必然的にプライバシーや法的問題が発生する可能性がある。
FRモデルのトレーニングのために合成データを生成することは、これらの問題を回避するための実現可能な解決策である。
既存の合成顔認証法は、アイデンティティ保存画像の生成において大きな進歩を遂げているが、それらはコンテキストオーバーフィットに悩まされ、生成画像のクラス内多様性が欠如し、顔認識性能が低下する結果となった。
本稿では,UIFace として短縮された合成顔認証のためのクラス内多様性を高めるために,モデルの一貫性を解放する枠組みを提案する。
我々のフレームワークは、まず拡散モデルを訓練し、識別コンテキストまたは学習可能な空のコンテキストでサンプリング条件を実行できる。
前者はアイデンティティ保存画像を生成するが、バリエーションはないが、後者はクラス内の様々なイメージをランダムに合成する本質的な能力を生かしている。
そして、推論中に新しい2段階のサンプリング戦略を採用し、両方のコンテキストの強みをフル活用し、その結果、アイデンティティ保存だけでなく多様な画像が生成される。
さらに、空のコンテキストからのアテンションマップを利用して、クラス内の変動をさらに増大させ、ID条件付き生成におけるサンプリングプロセスをガイドするアテンションインジェクションモジュールを導入する。
実験結果から,本手法は従来の手法に比べてトレーニングデータが少なく,合成データセットの約半分の規模で大幅に上回っていることがわかった。
提案したUIFaceは、実際のデータセットでトレーニングされたFRモデルと同等のパフォーマンスを実現しています。
関連論文リスト
- CemiFace: Center-based Semi-hard Synthetic Face Generation for Face Recognition [33.17771044475894]
顔画像と顔の同一性のある顔画像は、訓練された顔認識モデルの性能において極めて有効であることを示す。
そこで本研究では, 対象中心と様々なレベルの類似性を持つ顔サンプルを生成する, 拡散に基づく新しいアプローチ(すなわち, 中心をベースとした半硬顔生成)を提案する。
論文 参考訳(メタデータ) (2024-09-27T16:11:30Z) - ID$^3$: Identity-Preserving-yet-Diversified Diffusion Models for Synthetic Face Recognition [60.15830516741776]
合成顔認識(SFR)は、実際の顔データの分布を模倣するデータセットを生成することを目的としている。
拡散燃料SFRモデルであるtextID3$を紹介します。
textID3$はID保存損失を利用して、多様だがアイデンティティに一貫性のある顔の外観を生成する。
論文 参考訳(メタデータ) (2024-09-26T06:46:40Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
大規模な顔認識データセットは、インターネットをクロールして個人の同意なしに収集し、法的、倫理的、プライバシー上の懸念を提起する。
近年、ウェブクローリングされた顔認識データセットにおける懸念を軽減するために、合成顔認識データセットの生成が提案されている。
本稿では,第18回IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)と共同で開催されているSynthetic Data for Face Recognition (SDFR)コンペティションの概要を紹介する。
SDFRコンペティションは2つのタスクに分けられ、参加者は新しい合成データセットまたは/または既存のデータセットを使用して顔認識システムを訓練することができる。
論文 参考訳(メタデータ) (2024-04-06T10:30:31Z) - SynthDistill: Face Recognition with Knowledge Distillation from
Synthetic Data [8.026313049094146]
最先端の顔認識ネットワークは計算コストが高く、モバイルアプリケーションでは利用できないことが多い。
本稿では,教師の事前学習した顔認識モデルの知識を合成データを用いて抽出し,軽量な顔認識モデルを訓練するための新しい枠組みを提案する。
我々は、識別ラベルのない合成顔画像を用いて、合成データセットのクラス内変動生成における問題を緩和する。
論文 参考訳(メタデータ) (2023-08-28T19:15:27Z) - GANDiffFace: Controllable Generation of Synthetic Datasets for Face
Recognition with Realistic Variations [2.7467281625529134]
本研究は,顔認識のための合成データセット生成のための新しいフレームワークであるGANDiffFaceを紹介する。
GANDiffFaceは、GAN(Generative Adversarial Networks)とDiffusionモデルのパワーを組み合わせて、既存の合成データセットの制限を克服する。
論文 参考訳(メタデータ) (2023-05-31T15:49:12Z) - Unsupervised Face Recognition using Unlabeled Synthetic Data [16.494722503803196]
ラベルなし合成データ(U SynthFace)に基づく教師なし顔認識モデルを提案する。
提案したU SynthFaceは、同一の合成インスタンスの2つの拡張画像の類似性を最大化することを学ぶ。
ラベルなし合成データを用いた比較的高い認識精度を実現するためのU SynthFaceの有効性を実証する。
論文 参考訳(メタデータ) (2022-11-14T14:05:19Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
本稿では,3次元モデルを用いたドメイン転送型顔強調ネットワーク(DotFAN)を提案する。
DotFANは、他のドメインから収集された既存のリッチフェイスデータセットから抽出された知識に基づいて、入力顔の一連の変種を生成することができる。
実験によると、DotFANは、クラス内の多様性を改善するために、小さな顔データセットを増やすのに有益である。
論文 参考訳(メタデータ) (2020-02-23T08:16:34Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。