UIFace: Unleashing Inherent Model Capabilities to Enhance Intra-Class Diversity in Synthetic Face Recognition
- URL: http://arxiv.org/abs/2502.19803v1
- Date: Thu, 27 Feb 2025 06:22:18 GMT
- Title: UIFace: Unleashing Inherent Model Capabilities to Enhance Intra-Class Diversity in Synthetic Face Recognition
- Authors: Xiao Lin, Yuge Huang, Jianqing Xu, Yuxi Mi, Shuigeng Zhou, Shouhong Ding,
- Abstract summary: Face recognition (FR) stands as one of the most crucial applications in computer vision.<n>We propose a framework to enhance intra-class diversity for synthetic face recognition, shortened as UIFace.<n> Experiments show that our method significantly surpasses previous approaches with even less training data and half the size of synthetic dataset.
- Score: 42.86969216015855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face recognition (FR) stands as one of the most crucial applications in computer vision. The accuracy of FR models has significantly improved in recent years due to the availability of large-scale human face datasets. However, directly using these datasets can inevitably lead to privacy and legal problems. Generating synthetic data to train FR models is a feasible solution to circumvent these issues. While existing synthetic-based face recognition methods have made significant progress in generating identity-preserving images, they are severely plagued by context overfitting, resulting in a lack of intra-class diversity of generated images and poor face recognition performance. In this paper, we propose a framework to Unleash Inherent capability of the model to enhance intra-class diversity for synthetic face recognition, shortened as UIFace. Our framework first trains a diffusion model that can perform sampling conditioned on either identity contexts or a learnable empty context. The former generates identity-preserving images but lacks variations, while the latter exploits the model's intrinsic ability to synthesize intra-class-diversified images but with random identities. Then we adopt a novel two-stage sampling strategy during inference to fully leverage the strengths of both types of contexts, resulting in images that are diverse as well as identitypreserving. Moreover, an attention injection module is introduced to further augment the intra-class variations by utilizing attention maps from the empty context to guide the sampling process in ID-conditioned generation. Experiments show that our method significantly surpasses previous approaches with even less training data and half the size of synthetic dataset. The proposed UIFace even achieves comparable performance with FR models trained on real datasets when we further increase the number of synthetic identities.
Related papers
- ID-Booth: Identity-consistent Face Generation with Diffusion Models [10.042492056152232]
We present a novel generative diffusion-based framework called ID-Booth.
The framework enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models.
Our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity.
arXiv Detail & Related papers (2025-04-10T02:20:18Z) - CemiFace: Center-based Semi-hard Synthetic Face Generation for Face Recognition [33.17771044475894]
We show that face images with certain degree of similarities to their identity centers show great effectiveness in the performance of trained face recognition models.
Inspired by this, we propose a novel diffusion-based approach (namely Center-based Semi-hard Synthetic Face Generation) which produces facial samples with various levels of similarity to the subject center.
arXiv Detail & Related papers (2024-09-27T16:11:30Z) - ID$^3$: Identity-Preserving-yet-Diversified Diffusion Models for Synthetic Face Recognition [60.15830516741776]
Synthetic face recognition (SFR) aims to generate datasets that mimic the distribution of real face data.
We introduce a diffusion-fueled SFR model termed $textID3$.
$textID3$ employs an ID-preserving loss to generate diverse yet identity-consistent facial appearances.
arXiv Detail & Related papers (2024-09-26T06:46:40Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - SynthDistill: Face Recognition with Knowledge Distillation from
Synthetic Data [8.026313049094146]
State-of-the-art face recognition networks are often computationally expensive and cannot be used for mobile applications.
We propose a new framework to train lightweight face recognition models by distilling the knowledge of a pretrained teacher face recognition model using synthetic data.
We use synthetic face images without identity labels, mitigating the problems in the intra-class variation generation of synthetic datasets.
arXiv Detail & Related papers (2023-08-28T19:15:27Z) - GANDiffFace: Controllable Generation of Synthetic Datasets for Face
Recognition with Realistic Variations [2.7467281625529134]
This study introduces GANDiffFace, a novel framework for the generation of synthetic datasets for face recognition.
GANDiffFace combines the power of Generative Adversarial Networks (GANs) and Diffusion models to overcome the limitations of existing synthetic datasets.
arXiv Detail & Related papers (2023-05-31T15:49:12Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.