HASN: Hybrid Attention Separable Network for Efficient Image Super-resolution
- URL: http://arxiv.org/abs/2410.09844v1
- Date: Sun, 13 Oct 2024 14:00:21 GMT
- Title: HASN: Hybrid Attention Separable Network for Efficient Image Super-resolution
- Authors: Weifeng Cao, Xiaoyan Lei, Jun Shi, Wanyong Liang, Jie Liu, Zongfei Bai,
- Abstract summary: lightweight methods for single image super-resolution achieved impressive performance due to limited hardware resources.
We find that using residual connections after each block increases the model's storage and computational cost.
We use depthwise separable convolutions, fully connected layers, and activation functions as the basic feature extraction modules.
- Score: 5.110892180215454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, lightweight methods for single image super-resolution (SISR) have gained significant popularity and achieved impressive performance due to limited hardware resources. These methods demonstrate that adopting residual feature distillation is an effective way to enhance performance. However, we find that using residual connections after each block increases the model's storage and computational cost. Therefore, to simplify the network structure and learn higher-level features and relationships between features, we use depthwise separable convolutions, fully connected layers, and activation functions as the basic feature extraction modules. This significantly reduces computational load and the number of parameters while maintaining strong feature extraction capabilities. To further enhance model performance, we propose the Hybrid Attention Separable Block (HASB), which combines channel attention and spatial attention, thus making use of their complementary advantages. Additionally, we use depthwise separable convolutions instead of standard convolutions, significantly reducing the computational load and the number of parameters while maintaining strong feature extraction capabilities. During the training phase, we also adopt a warm-start retraining strategy to exploit the potential of the model further. Extensive experiments demonstrate the effectiveness of our approach. Our method achieves a smaller model size and reduced computational complexity without compromising performance. Code can be available at https://github.com/nathan66666/HASN.git
Related papers
- LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - GRAN: Ghost Residual Attention Network for Single Image Super Resolution [44.4178326950426]
This paper introduces Ghost Residual Attention Block (GRAB) groups to overcome the drawbacks of the standard convolutional operation.
Ghost Module can reveal information underlying intrinsic features by employing linear operations to replace the standard convolutions.
Experiments conducted on the benchmark datasets demonstrate the superior performance of our method in both qualitative and quantitative.
arXiv Detail & Related papers (2023-02-28T13:26:24Z) - Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
In this work, we propose a novel Residual Local Feature Network (RLFN)
The main idea is using three convolutional layers for residual local feature learning to simplify feature aggregation.
In addition, we won the first place in the runtime track of the NTIRE 2022 efficient super-resolution challenge.
arXiv Detail & Related papers (2022-05-16T08:46:34Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Efficient Non-Local Contrastive Attention for Image Super-Resolution [48.093500219958834]
Non-Local Attention (NLA) brings significant improvement for Single Image Super-Resolution (SISR) by leveraging intrinsic feature correlation in natural images.
We propose a novel Efficient Non-Local Contrastive Attention (ENLCA) to perform long-range visual modeling and leverage more relevant non-local features.
arXiv Detail & Related papers (2022-01-11T05:59:09Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
Single image super-resolution (SISR) system based on convolutional neural networks (CNNs) achieves fancy performance while requires huge computational costs.
We propose to use shift operation to generate the redundant features (i.e., Ghost features) of SISR models.
We show that both the non-compact and lightweight SISR models embedded in our proposed module can achieve comparable performance to that of their baselines.
arXiv Detail & Related papers (2021-01-21T10:09:47Z) - FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network
Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling [15.059508985699575]
FG-Net is a general deep learning framework for large-scale point clouds understanding without voxelizations.
We propose a deep convolutional neural network leveraging correlated feature mining and deformable convolution based geometric-aware modelling.
Our approaches outperform state-of-the-art approaches in terms of accuracy and efficiency.
arXiv Detail & Related papers (2020-12-17T08:20:09Z) - Lightweight Single-Image Super-Resolution Network with Attentive
Auxiliary Feature Learning [73.75457731689858]
We develop a computation efficient yet accurate network based on the proposed attentive auxiliary features (A$2$F) for SISR.
Experimental results on large-scale dataset demonstrate the effectiveness of the proposed model against the state-of-the-art (SOTA) SR methods.
arXiv Detail & Related papers (2020-11-13T06:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.