論文の概要: GenPC: Zero-shot Point Cloud Completion via 3D Generative Priors
- arxiv url: http://arxiv.org/abs/2502.19896v1
- Date: Thu, 27 Feb 2025 09:09:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:57:30.499464
- Title: GenPC: Zero-shot Point Cloud Completion via 3D Generative Priors
- Title(参考訳): GenPC: 3D生成プリミティブによるゼロショットポイントクラウドコンプリート
- Authors: An Li, Zhe Zhu, Mingqiang Wei,
- Abstract要約: GenPCは、明示的な3D生成先行情報を活用することで、高品質な現実世界のスキャンを再構築するように設計されている。
我々の重要な洞察は、最近のフィードフォワード3D生成モデルは、広範囲のインターネットスケールのデータに基づいて訓練され、ゼロショット設定でシングルビュー画像から3D生成を行う能力を示したことである。
- 参考スコア(独自算出の注目度): 24.820869358060342
- License:
- Abstract: Existing point cloud completion methods, which typically depend on predefined synthetic training datasets, encounter significant challenges when applied to out-of-distribution, real-world scans. To overcome this limitation, we introduce a zero-shot completion framework, termed GenPC, designed to reconstruct high-quality real-world scans by leveraging explicit 3D generative priors. Our key insight is that recent feed-forward 3D generative models, trained on extensive internet-scale data, have demonstrated the ability to perform 3D generation from single-view images in a zero-shot setting. To harness this for completion, we first develop a Depth Prompting module that links partial point clouds with image-to-3D generative models by leveraging depth images as a stepping stone. To retain the original partial structure in the final results, we design the Geometric Preserving Fusion module that aligns the generated shape with input by adaptively adjusting its pose and scale. Extensive experiments on widely used benchmarks validate the superiority and generalizability of our approach, bringing us a step closer to robust real-world scan completion.
- Abstract(参考訳): 既存のクラウド補完手法は、通常、事前に定義された総合的なトレーニングデータセットに依存するが、アウト・オブ・ディストリビューション(out-of-distribution, real-world)のスキャンに適用した場合、重大な課題に直面する。
この制限を克服するために、我々はGenPCと呼ばれるゼロショット・コンプリート・フレームワークを導入し、明示的な3D生成先行情報を活用することで高品質な実世界のスキャンを再構築する。
我々の重要な洞察は、最近のフィードフォワード3D生成モデルは、広範囲のインターネットスケールのデータに基づいて訓練され、ゼロショット設定でシングルビュー画像から3D生成を行う能力を示したことである。
そこで我々はまず, 深度画像をステップ石として利用して, 部分点雲を画像から3次元生成モデルにリンクするDepth Promptingモジュールを開発した。
最終的な結果に元の部分構造を保持するために,そのポーズとスケールを適応的に調整して生成した形状と入力を整列する幾何保存融合モジュールを設計する。
広く使われているベンチマークに関する大規模な実験は、我々のアプローチの優位性と一般化性を検証し、より堅牢な実世界のスキャン完了に一歩近づいた。
関連論文リスト
- GRIN: Zero-Shot Metric Depth with Pixel-Level Diffusion [27.35300492569507]
本稿では,非構造化トレーニングデータを取り込むための効率的な拡散モデルGRINを提案する。
GRINは,ゼロショット距離単眼深度推定において,スクラッチからトレーニングした場合でも,新たな技術の確立を図っている。
論文 参考訳(メタデータ) (2024-09-15T23:32:04Z) - Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
我々は、オブジェクトレベルとカテゴリ固有の幾何学的類似性の両方を効果的に活用するフレームワークであるMAL-SPCを提案する。
私たちのMAL-SPCは3Dの完全な監視を一切必要とせず、各オブジェクトに1つの部分点クラウドを必要とするだけです。
論文 参考訳(メタデータ) (2024-07-13T06:53:39Z) - GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions [22.077366472693395]
単一ビューコレクションから3次元形状と画像を合成するための新しい生成手法を提案する。
ニューラルラディアンス場を用いたボリュームレンダリングを用いることで、生成した幾何学はノイズが多く、制約がないという重要な制限を継承する。
エンド・ツー・エンドで訓練された新しいSDFベースの3D生成モデルであるGeoGenを提案する。
論文 参考訳(メタデータ) (2024-06-06T17:00:10Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
大規模再構成モデルは、単一または複数入力画像から自動3Dコンテンツ生成の領域において大きな進歩を遂げている。
彼らの成功にもかかわらず、これらのモデルはしばしば幾何学的不正確な3Dメッシュを生成し、画像データからのみ3D形状を推論する固有の課題から生まれた。
生成した3Dメッシュの忠実度を高めるために3Dポイントクラウドデータを利用する新しいフレームワークであるLarge Image and Point Cloud Alignment Model (LAM3D)を導入する。
論文 参考訳(メタデータ) (2024-05-24T15:09:12Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
生成事前学習は、2次元視覚における基本モデルの性能を高めることができる。
3Dビジョンでは、トランスフォーマーベースのバックボーンの過度な信頼性と、点雲の秩序のない性質により、生成前のトレーニングのさらなる発展が制限されている。
本稿では,任意の点クラウドモデルに適用可能な3D-to-2D生成事前学習法を提案する。
論文 参考訳(メタデータ) (2023-07-27T16:07:03Z) - Flow-based GAN for 3D Point Cloud Generation from a Single Image [16.04710129379503]
本稿では,任意の解像度の点群をサンプリングするためのフローベース明示的生成モデルを継承する,ハイブリッドな明示的生成モデルを提案する。
大規模合成データセットShapeNetについて評価し,提案手法の優れた性能を示す実験結果を得た。
論文 参考訳(メタデータ) (2022-10-08T17:58:20Z) - P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with
Point-to-Pixel Prompting [94.11915008006483]
本稿では,ポイントクラウド解析のための新しいポイント・ツー・Pixelを提案する。
ScanObjectNNの最も難しい設定では,89.3%の精度が得られる。
また,本フレームワークは,ModelNet分類とShapeNet Part Codeで非常に競争力のある性能を示す。
論文 参考訳(メタデータ) (2022-08-04T17:59:03Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
1枚以上の画像から3D屋内シーンを没入する問題について検討する。
我々の狙いは、新しい視点から高解像度の画像とビデオを作成することである。
本稿では,不完全点雲の再投影から高解像度のRGB-D画像へ直接マップするイメージ・ツー・イメージのGANを提案する。
論文 参考訳(メタデータ) (2022-04-06T17:54:46Z) - OSTeC: One-Shot Texture Completion [86.23018402732748]
ワンショット3D顔テクスチャ補完のための教師なしアプローチを提案する。
提案手法では,2次元フェースジェネレータで回転画像を再構成することにより,入力画像を3次元で回転させ,見えない領域を埋め込む。
完成したテクスチャーをジェネレーターに投影することで、ターゲットイメージを先取りします。
論文 参考訳(メタデータ) (2020-12-30T23:53:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。