GenPC: Zero-shot Point Cloud Completion via 3D Generative Priors
- URL: http://arxiv.org/abs/2502.19896v1
- Date: Thu, 27 Feb 2025 09:09:57 GMT
- Title: GenPC: Zero-shot Point Cloud Completion via 3D Generative Priors
- Authors: An Li, Zhe Zhu, Mingqiang Wei,
- Abstract summary: GenPC is designed to reconstruct high-quality real-world scans by leveraging explicit 3D generative priors.<n>Our key insight is that recent feed-forward 3D generative models, trained on extensive internet-scale data, have demonstrated the ability to perform 3D generation from single-view images in a zero-shot setting.
- Score: 24.820869358060342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing point cloud completion methods, which typically depend on predefined synthetic training datasets, encounter significant challenges when applied to out-of-distribution, real-world scans. To overcome this limitation, we introduce a zero-shot completion framework, termed GenPC, designed to reconstruct high-quality real-world scans by leveraging explicit 3D generative priors. Our key insight is that recent feed-forward 3D generative models, trained on extensive internet-scale data, have demonstrated the ability to perform 3D generation from single-view images in a zero-shot setting. To harness this for completion, we first develop a Depth Prompting module that links partial point clouds with image-to-3D generative models by leveraging depth images as a stepping stone. To retain the original partial structure in the final results, we design the Geometric Preserving Fusion module that aligns the generated shape with input by adaptively adjusting its pose and scale. Extensive experiments on widely used benchmarks validate the superiority and generalizability of our approach, bringing us a step closer to robust real-world scan completion.
Related papers
- HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.
We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.
Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions [22.077366472693395]
We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections.
By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained.
We propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner.
arXiv Detail & Related papers (2024-06-06T17:00:10Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
generative pre-training can boost the performance of fundamental models in 2D vision.
In 3D vision, the over-reliance on Transformer-based backbones and the unordered nature of point clouds have restricted the further development of generative pre-training.
We propose a novel 3D-to-2D generative pre-training method that is adaptable to any point cloud model.
arXiv Detail & Related papers (2023-07-27T16:07:03Z) - Flow-based GAN for 3D Point Cloud Generation from a Single Image [16.04710129379503]
We introduce a hybrid explicit-implicit generative modeling scheme, which inherits the flow-based explicit generative models for sampling point clouds with arbitrary resolutions.
We evaluate on the large-scale synthetic dataset ShapeNet, with the experimental results demonstrating the superior performance of the proposed method.
arXiv Detail & Related papers (2022-10-08T17:58:20Z) - P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with
Point-to-Pixel Prompting [94.11915008006483]
We propose a novel Point-to-Pixel prompting for point cloud analysis.
Our method attains 89.3% accuracy on the hardest setting of ScanObjectNN.
Our framework also exhibits very competitive performance on ModelNet classification and ShapeNet Part Code.
arXiv Detail & Related papers (2022-08-04T17:59:03Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - OSTeC: One-Shot Texture Completion [86.23018402732748]
We propose an unsupervised approach for one-shot 3D facial texture completion.
The proposed approach rotates an input image in 3D and fill-in the unseen regions by reconstructing the rotated image in a 2D face generator.
We frontalize the target image by projecting the completed texture into the generator.
arXiv Detail & Related papers (2020-12-30T23:53:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.