Deterministic or probabilistic? The psychology of LLMs as random number generators
- URL: http://arxiv.org/abs/2502.19965v1
- Date: Thu, 27 Feb 2025 10:45:27 GMT
- Title: Deterministic or probabilistic? The psychology of LLMs as random number generators
- Authors: Javier Coronado-Blázquez,
- Abstract summary: Large Language Models (LLMs) have transformed text generation through inherently probabilistic context-aware mechanisms.<n>Our results reveal that, despite their transformers-based architecture, these models often exhibit deterministic responses when prompted for random numerical outputs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have transformed text generation through inherently probabilistic context-aware mechanisms, mimicking human natural language. In this paper, we systematically investigate the performance of various LLMs when generating random numbers, considering diverse configurations such as different model architectures, numerical ranges, temperature, and prompt languages. Our results reveal that, despite their stochastic transformers-based architecture, these models often exhibit deterministic responses when prompted for random numerical outputs. In particular, we find significant differences when changing the model, as well as the prompt language, attributing this phenomenon to biases deeply embedded within the training data. Models such as DeepSeek-R1 can shed some light on the internal reasoning process of LLMs, despite arriving to similar results. These biases induce predictable patterns that undermine genuine randomness, as LLMs are nothing but reproducing our own human cognitive biases.
Related papers
- Natural Fingerprints of Large Language Models [36.221625684689414]
Large language models (LLMs) often exhibit biases in their outputs.
These range from overt issues, such as unfair responses, to subtler patterns that can reveal which model produced them.
We investigate the factors that give rise to identifiable characteristics in LLMs.
arXiv Detail & Related papers (2025-04-21T05:48:52Z) - Computation Mechanism Behind LLM Position Generalization [59.013857707250814]
Large language models (LLMs) exhibit flexibility in handling textual positions.
They can understand texts with position perturbations and generalize to longer texts.
This work connects the linguistic phenomenon with LLMs' computational mechanisms.
arXiv Detail & Related papers (2025-03-17T15:47:37Z) - Unnatural Languages Are Not Bugs but Features for LLMs [92.8332103170009]
Large Language Models (LLMs) have been observed to process non-human-readable text sequences, such as jailbreak prompts.
We present a systematic investigation challenging this perception, demonstrating that unnatural languages contain latent features usable by models.
arXiv Detail & Related papers (2025-03-02T12:10:17Z) - What Languages are Easy to Language-Model? A Perspective from Learning Probabilistic Regular Languages [78.1866280652834]
Large language models (LM) are distributions over strings.<n>We investigate the learnability of regular LMs (RLMs) by RNN and Transformer LMs.<n>We find that the complexity of the RLM rank is strong and significant predictors of learnability for both RNNs and Transformers.
arXiv Detail & Related papers (2024-06-06T17:34:24Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
We study ICL through the lens of a new family of model problems we term in context language learning (ICLL)
We evaluate a diverse set of neural sequence models on regular ICLL tasks.
arXiv Detail & Related papers (2024-01-23T18:59:21Z) - In-Context Learning Dynamics with Random Binary Sequences [16.645695664776433]
We propose a framework that enables us to analyze in-context learning dynamics.
Inspired by the cognitive science of human perception, we use random binary sequences as context.
In the latest GPT-3.5+ models, we find emergent abilities to generate seemingly random numbers and learn basic formal languages.
arXiv Detail & Related papers (2023-10-26T17:54:52Z) - ThinkSum: Probabilistic reasoning over sets using large language models [18.123895485602244]
We propose a two-stage probabilistic inference paradigm, ThinkSum, which reasons over sets of objects or facts in a structured manner.
We demonstrate the possibilities and advantages of ThinkSum on the BIG-bench suite of LLM evaluation tasks.
arXiv Detail & Related papers (2022-10-04T00:34:01Z) - Evaluating Distributional Distortion in Neural Language Modeling [81.83408583979745]
A heavy-tail of rare events accounts for a significant amount of the total probability mass of distributions in language.
Standard language modeling metrics such as perplexity quantify the performance of language models (LM) in aggregate.
We develop a controlled evaluation scheme which uses generative models trained on natural data as artificial languages.
arXiv Detail & Related papers (2022-03-24T01:09:46Z) - Multi-timescale Representation Learning in LSTM Language Models [69.98840820213937]
Language models must capture statistical dependencies between words at timescales ranging from very short to very long.
We derived a theory for how the memory gating mechanism in long short-term memory language models can capture power law decay.
Experiments showed that LSTM language models trained on natural English text learn to approximate this theoretical distribution.
arXiv Detail & Related papers (2020-09-27T02:13:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.