Modern DDoS Threats and Countermeasures: Insights into Emerging Attacks and Detection Strategies
- URL: http://arxiv.org/abs/2502.19996v1
- Date: Thu, 27 Feb 2025 11:22:25 GMT
- Title: Modern DDoS Threats and Countermeasures: Insights into Emerging Attacks and Detection Strategies
- Authors: Jincheng Wang, Le Yu, John C. S. Lui, Xiapu Luo,
- Abstract summary: Distributed Denial of Service (DDoS) attacks persist as significant threats to online services and infrastructure.<n>This paper offers a comprehensive survey of emerging DDoS attacks and detection strategies over the past decade.
- Score: 49.57278643040602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed Denial of Service (DDoS) attacks persist as significant threats to online services and infrastructure, evolving rapidly in sophistication and eluding traditional detection mechanisms. This evolution demands a comprehensive examination of current trends in DDoS attacks and the efficacy of modern detection strategies. This paper offers an comprehensive survey of emerging DDoS attacks and detection strategies over the past decade. We delve into the diversification of attack targets, extending beyond conventional web services to include newer network protocols and systems, and the adoption of advanced adversarial tactics. Additionally, we review current detection techniques, highlighting essential features that modern systems must integrate to effectively neutralize these evolving threats. Given the technological demands of contemporary network systems, such as high-volume and in-line packet processing capabilities, we also explore how innovative hardware technologies like programmable switches can significantly enhance the development and deployment of robust DDoS detection systems. We conclude by identifying open problems and proposing future directions for DDoS research. In particular, our survey sheds light on the investigation of DDoS attack surfaces for emerging systems, protocols, and adversarial strategies. Moreover, we outlines critical open questions in the development of effective detection systems, e.g., the creation of defense mechanisms independent of control planes.
Related papers
- Robust Intrusion Detection System with Explainable Artificial Intelligence [0.0]
Adversarial input can exploit machine learning (ML) models through standard interfaces.
Conventional defenses such as adversarial training are costly in computational terms and often fail to provide real-time detection.
We suggest a novel strategy for detecting and mitigating adversarial attacks using eXplainable Artificial Intelligence (XAI)
arXiv Detail & Related papers (2025-03-07T10:31:59Z) - A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
Adversarial attacks, particularly those targeting vulnerabilities in deep learning models, present a nuanced and substantial threat to cybersecurity.<n>Our study delves into adversarial learning threats such as Data Poisoning, Test Time Evasion, and Reverse Engineering.<n>Our research lays the groundwork for strengthening defense mechanisms to address the potential breaches in network security and privacy posed by adversarial attacks.
arXiv Detail & Related papers (2024-12-18T14:21:46Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - IoT Botnet Detection Using an Economic Deep Learning Model [0.0]
This paper proposes an economic deep learning-based model for detecting IoT botnet attacks along with different types of attacks.
The proposed model achieved higher accuracy than the state-of-the-art detection models using a smaller implementation budget and accelerating the training and detecting processes.
arXiv Detail & Related papers (2023-02-03T21:41:17Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
Smart grid systems are critical to the power industry, however their sophisticated architectural design and operations expose them to a number of cybersecurity threats.
Artificial Intelligence (AI)-based technologies are becoming increasingly popular for detecting cyber assaults in a variety of computer settings.
The present AI systems are being exposed and vanquished because of the recent emergence of sophisticated adversarial systems such as Generative Adversarial Networks (GAN)
arXiv Detail & Related papers (2022-02-14T21:41:36Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Timely Detection and Mitigation of Stealthy DDoS Attacks via IoT
Networks [30.68108039722565]
Internet of Things (IoT) devices are susceptible to being compromised and being part of a new type of stealthy Distributed Denial of Service (DDoS) attack, called Mongolian DDoS.
This study proposes a novel anomaly-based Intrusion Detection System (IDS) that is capable of timely detecting and mitigating this emerging type of DDoS attacks.
arXiv Detail & Related papers (2020-06-15T00:54:49Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning [48.49658986576776]
Deep Reinforcement Learning (DRL) has numerous applications in the real world thanks to its outstanding ability in adapting to the surrounding environments.
Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications.
This paper presents emerging attacks in DRL-based systems and the potential countermeasures to defend against these attacks.
arXiv Detail & Related papers (2020-01-27T10:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.