IoT Botnet Detection Using an Economic Deep Learning Model
- URL: http://arxiv.org/abs/2302.02013v4
- Date: Sun, 28 May 2023 15:34:32 GMT
- Title: IoT Botnet Detection Using an Economic Deep Learning Model
- Authors: Nelly Elsayed, Zag ElSayed, Magdy Bayoumi
- Abstract summary: This paper proposes an economic deep learning-based model for detecting IoT botnet attacks along with different types of attacks.
The proposed model achieved higher accuracy than the state-of-the-art detection models using a smaller implementation budget and accelerating the training and detecting processes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress in technology innovation usage and distribution has
increased in the last decade. The rapid growth of the Internet of Things (IoT)
systems worldwide has increased network security challenges created by
malicious third parties. Thus, reliable intrusion detection and network
forensics systems that consider security concerns and IoT systems limitations
are essential to protect such systems. IoT botnet attacks are one of the
significant threats to enterprises and individuals. Thus, this paper proposed
an economic deep learning-based model for detecting IoT botnet attacks along
with different types of attacks. The proposed model achieved higher accuracy
than the state-of-the-art detection models using a smaller implementation
budget and accelerating the training and detecting processes.
Related papers
- Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
Traditional centralized security methods often struggle to balance privacy preservation and real-time threat detection in IoT networks.
This study proposes a Federated Learning-Driven Cybersecurity Framework designed specifically for IoT environments.
Secure aggregation of locally trained models is achieved using homomorphic encryption, allowing collaborative learning without exposing sensitive information.
arXiv Detail & Related papers (2025-02-14T23:11:51Z) - Enhanced Hybrid Deep Learning Approach for Botnet Attacks Detection in IoT Environment [0.5384718724090648]
Botnet attacks erode trust in IoT devices and systems, undermining confidence in their security, reliability, and integrity.
Deep learning techniques have significantly enhanced the detection of botnet attacks due to their ability to analyze and learn from complex patterns in data.
This research proposed the stacking of Deep convolutional neural networks, Bi-Directional Long Short-Term Memory (Bi-LSTM), Bi-Directional Gated Recurrent Unit (Bi-GRU), and Recurrent Neural Networks (RNN) for botnet attacks detection.
arXiv Detail & Related papers (2025-02-10T03:59:27Z) - CryptoDNA: A Machine Learning Paradigm for DDoS Detection in Healthcare IoT, Inspired by crypto jacking prevention Models [0.0]
The rapid integration of the Internet of Things (IoT) and Internet of Medical (IoM) devices in the healthcare industry has markedly improved patient care and hospital operations.
DDoS attacks present significant dangers, jeopardizing operational stability and patient safety.
This study introduces CryptoDNA, an innovative machine learning detection framework influenced by cryptojacking detection methods.
arXiv Detail & Related papers (2025-01-30T18:22:16Z) - Enhancing Cybersecurity in IoT Networks: A Deep Learning Approach to Anomaly Detection [0.0]
The proliferation of the Internet and smart devices has led to a rise in cybercrimes.
This paper introduces a deep learning model incorporating LSTM and attention mechanisms, a pivotal strategy in combating cybercrime in IoT networks.
arXiv Detail & Related papers (2024-12-11T11:31:05Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated.
To efficiently secure IoT devices, real-time detection of intrusion systems is critical.
This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security.
arXiv Detail & Related papers (2024-10-01T19:24:34Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z) - Timely Detection and Mitigation of Stealthy DDoS Attacks via IoT
Networks [30.68108039722565]
Internet of Things (IoT) devices are susceptible to being compromised and being part of a new type of stealthy Distributed Denial of Service (DDoS) attack, called Mongolian DDoS.
This study proposes a novel anomaly-based Intrusion Detection System (IDS) that is capable of timely detecting and mitigating this emerging type of DDoS attacks.
arXiv Detail & Related papers (2020-06-15T00:54:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.