AsymLoRA: Harmonizing Data Conflicts and Commonalities in MLLMs
- URL: http://arxiv.org/abs/2502.20035v1
- Date: Thu, 27 Feb 2025 12:21:02 GMT
- Title: AsymLoRA: Harmonizing Data Conflicts and Commonalities in MLLMs
- Authors: Xuyang Wei, Chunlin Tian, Li Li,
- Abstract summary: AsymLoRA is a parameter-efficient tuning framework that unifies knowledge modularization and cross-modal coordination.<n>AsymLoRA consistently surpasses both vanilla LoRA, which captures only commonalities, and LoRA-MoE, which focuses solely on conflicts.
- Score: 5.018961516699825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective instruction fine-tuning on diverse image-text datasets is crucial for developing a versatile Multimodal Large Language Model (MLLM), where dataset composition dictates the model's adaptability across multimodal tasks. However, complex datasets often contain inherent conflicts -- stemming from modality-specific optimization objectives -- and latent commonalities that enable cross-task transfer, which most existing approaches handle separately. To bridge this gap, we introduce AsymLoRA, a parameter-efficient tuning framework that unifies knowledge modularization and cross-modal coordination via asymmetric LoRA: task-specific low-rank projections (matrix B) that preserve distinct adaptation pathways for conflicting objectives, and a shared projection (matrix A) that consolidates cross-modal commonalities. Extensive evaluations demonstrate that AsymLoRA consistently surpasses both vanilla LoRA, which captures only commonalities, and LoRA-MoE, which focuses solely on conflicts, achieving superior model performance and system efficiency across diverse benchmarks.\href{Code}{https://github.com/Clin0212/HydraLoRA/blob/main/MLLM-HydraLoRA/README.md}.
Related papers
- Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.
Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.
We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning [53.98941571078398]
Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity.<n>Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules.<n>While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks.<n>We propose Single-ranked Mixture of Experts LoRA (textbfSMoRA), which embeds MoE into LoRA by textittreating each rank as an
arXiv Detail & Related papers (2025-01-25T06:56:39Z) - MoSLD: An Extremely Parameter-Efficient Mixture-of-Shared LoRAs for Multi-Task Learning [8.868481107848185]
MoSLD is a mixture-of-shared-LoRAs model with a dropout strategy.
MoSLD addresses challenges by sharing the upper projection matrix in LoRA among different experts.
Our model exhibits excellent performance in both single-task and multi-task scenarios.
arXiv Detail & Related papers (2024-12-12T05:22:49Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing multi-task learning capabilities.
MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information.
This approach enables large language models (LLMs) pre-trained on general corpus to adapt to different target task domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA) offers an efficient way to fine-tune large language models (LLMs)
In this paper, we propose a framework that adaptively retrieves and composes multiple LoRAs based on input prompts.
arXiv Detail & Related papers (2024-06-24T05:24:41Z) - Mixture of LoRA Experts [87.50120181861362]
This paper introduces the Mixture of LoRA Experts (MoLE) approach, which harnesses hierarchical control and unfettered branch selection.
The MoLE approach achieves superior LoRA fusion performance in comparison to direct arithmetic merging.
arXiv Detail & Related papers (2024-04-21T11:59:53Z) - Mixture-of-LoRAs: An Efficient Multitask Tuning for Large Language
Models [7.966452497550907]
We propose the Mixture-of-LoRAs (MoA) architecture for multi-task learning with large language models (LLMs)
Multiple domain-specific LoRA modules can be aligned with the expert design principles observed in Mixture-of-Experts (MoE)
Each LoRA model can be iteratively adapted to a new domain, allowing for quick domain-specific adaptation.
arXiv Detail & Related papers (2024-03-06T03:33:48Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [51.58020580970644]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)<n>It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.<n> Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z) - LLaVA-MoLE: Sparse Mixture of LoRA Experts for Mitigating Data Conflicts
in Instruction Finetuning MLLMs [29.96139552754377]
We propose an efficient Mixture of Experts (MoE) design for instruction finetuning MLLMs.
Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets.
LLaVA-MoLE can even outperform the plain-LoRA baseline trained with twice the samples.
arXiv Detail & Related papers (2024-01-29T13:48:36Z) - MultiLoRA: Democratizing LoRA for Better Multi-Task Learning [20.750808913757396]
LoRA achieves remarkable resource efficiency and comparable performance when adapting LLMs for specific tasks.
LoRA is dominated by a small number of top singular vectors while fine-tuning decomposes into a set of less important unitary transforms.
We propose MultiLoRA for better multi-task adaptation by reducing the dominance of top singular vectors observed in LoRA.
arXiv Detail & Related papers (2023-11-20T02:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.