RouteRL: Multi-agent reinforcement learning framework for urban route choice with autonomous vehicles
- URL: http://arxiv.org/abs/2502.20065v1
- Date: Thu, 27 Feb 2025 13:13:09 GMT
- Title: RouteRL: Multi-agent reinforcement learning framework for urban route choice with autonomous vehicles
- Authors: Ahmet Onur Akman, Anastasia Psarou, Łukasz Gorczyca, Zoltán György Varga, Grzegorz Jamróz, Rafał Kucharski,
- Abstract summary: RouteRL is a novel framework that integrates multi-agent reinforcement learning (MARL) with a microscopic traffic simulation.<n>The proposed framework simulates the daily route choices of driver agents in a city, including two types: human drivers, emulated using behavioral route choice models, and AVs, modeled as MARL agents optimizing their policies for a predefined objective.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: RouteRL is a novel framework that integrates multi-agent reinforcement learning (MARL) with a microscopic traffic simulation, facilitating the testing and development of efficient route choice strategies for autonomous vehicles (AVs). The proposed framework simulates the daily route choices of driver agents in a city, including two types: human drivers, emulated using behavioral route choice models, and AVs, modeled as MARL agents optimizing their policies for a predefined objective. RouteRL aims to advance research in MARL, transport modeling, and human-AI interaction for transportation applications. This study presents a technical report on RouteRL, outlines its potential research contributions, and showcases its impact via illustrative examples.
Related papers
- AI-Driven Day-to-Day Route Choice [15.934133434324755]
"LLMTraveler" is an agent that learns from past experiences and makes decisions by balancing retrieved data and personality traits.<n>This paper systematically evaluates the LLMTraveler's ability to replicate human-like decision-making through two stages of day-to-day congestion games.<n>This capability offers valuable insights for transportation policymaking, such as simulating traveler responses to new policies or changes in the network.
arXiv Detail & Related papers (2024-12-04T14:13:38Z) - Think Twice Before Recognizing: Large Multimodal Models for General Fine-grained Traffic Sign Recognition [49.20086587208214]
We propose a new strategy called think twice before recognizing to improve fine-grained traffic sign recognition (TSR)
Our strategy achieves effective fine-grained TSR by stimulating the multiple-thinking capability of large multimodal models (LMM)
arXiv Detail & Related papers (2024-09-03T02:08:47Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts.
The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods.
arXiv Detail & Related papers (2022-11-14T17:10:53Z) - Deep Inverse Reinforcement Learning for Route Choice Modeling [0.6853165736531939]
Route choice modeling is a fundamental task in transportation planning and demand forecasting.
This study proposes a general deep inverse reinforcement learning (IRL) framework for link-based route choice modeling.
Experiment results based on taxi GPS data from Shanghai, China validate the improved performance of the proposed model.
arXiv Detail & Related papers (2022-06-18T06:33:06Z) - An Introduction to Multi-Agent Reinforcement Learning and Review of its
Application to Autonomous Mobility [1.496194593196997]
Multi-Agent Reinforcement Learning (MARL) is a research field that aims to find optimal solutions for multiple agents that interact with each other.
This work aims to give an overview of the field to researchers in autonomous mobility.
arXiv Detail & Related papers (2022-03-15T06:40:28Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-Agent Reinforcement Learning for Markov Routing Games: A New
Modeling Paradigm For Dynamic Traffic Assignment [11.093194714316434]
We develop a Markov routing game (MRG) in which each agent learns and updates her own en-route path choice policy.
We show that the routing behavior of intelligent agents is shown to converge to the classical notion of predictive dynamic user equilibrium.
arXiv Detail & Related papers (2020-11-22T02:31:14Z) - SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving [96.50297622371457]
Multi-agent interaction is a fundamental aspect of autonomous driving in the real world.
Despite more than a decade of research and development, the problem of how to interact with diverse road users in diverse scenarios remains largely unsolved.
We develop a dedicated simulation platform called SMARTS that generates diverse and competent driving interactions.
arXiv Detail & Related papers (2020-10-19T18:26:10Z) - MIDAS: Multi-agent Interaction-aware Decision-making with Adaptive
Strategies for Urban Autonomous Navigation [22.594295184455]
This paper builds a reinforcement learning-based method named MIDAS where an ego-agent learns to affect the control actions of other cars.
MIDAS is validated using extensive experiments and we show that it (i) can work across different road geometries, (ii) is robust to changes in the driving policies of external agents, and (iv) is more efficient and safer than existing approaches to interaction-aware decision-making.
arXiv Detail & Related papers (2020-08-17T04:34:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.