URB -- Urban Routing Benchmark for RL-equipped Connected Autonomous Vehicles
- URL: http://arxiv.org/abs/2505.17734v1
- Date: Fri, 23 May 2025 10:54:53 GMT
- Title: URB -- Urban Routing Benchmark for RL-equipped Connected Autonomous Vehicles
- Authors: Ahmet Onur Akman, Anastasia Psarou, Michał Hoffmann, Łukasz Gorczyca, Łukasz Kowalski, Paweł Gora, Grzegorz Jamróz, Rafał Kucharski,
- Abstract summary: Reinforcement learning (RL) can facilitate the development of such collective routing strategies.<n>We present our: Urban Routing Benchmark for RL-equipped Connected Autonomous Vehicles.<n>Our results suggest that, despite the lengthy and costly training, state-of-the-art MARL algorithms rarely outperformed humans.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connected Autonomous Vehicles (CAVs) promise to reduce congestion in future urban networks, potentially by optimizing their routing decisions. Unlike for human drivers, these decisions can be made with collective, data-driven policies, developed by machine learning algorithms. Reinforcement learning (RL) can facilitate the development of such collective routing strategies, yet standardized and realistic benchmarks are missing. To that end, we present \our{}: Urban Routing Benchmark for RL-equipped Connected Autonomous Vehicles. \our{} is a comprehensive benchmarking environment that unifies evaluation across 29 real-world traffic networks paired with realistic demand patterns. \our{} comes with a catalog of predefined tasks, four state-of-the-art multi-agent RL (MARL) algorithm implementations, three baseline methods, domain-specific performance metrics, and a modular configuration scheme. Our results suggest that, despite the lengthy and costly training, state-of-the-art MARL algorithms rarely outperformed humans. Experimental results reported in this paper initiate the first leaderboard for MARL in large-scale urban routing optimization and reveal that current approaches struggle to scale, emphasizing the urgent need for advancements in this domain.
Related papers
- Realistic Urban Traffic Generator using Decentralized Federated Learning for the SUMO simulator [2.281163408378731]
This work introduces DesRUTGe, a novel framework that integrates Deep Reinforcement Learning agents with the SUMO simulator to generate realistic 24-hour traffic patterns.<n>A key innovation of DesRUTGe is its use of Decentralized Federated Learning (DFL), wherein each traffic detector and its corresponding urban zone function as an independent learning node.
arXiv Detail & Related papers (2025-06-09T17:51:45Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in Evolutionary optimization.<n>We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms.<n>For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing.
arXiv Detail & Related papers (2025-04-08T15:21:01Z) - Autonomous Vehicles Using Multi-Agent Reinforcement Learning for Routing Decisions Can Harm Urban Traffic [0.0]
Autonomous vehicles (AVs) using Multi-Agent Reinforcement Learning (MARL) for simultaneous route optimization may destabilize traffic environments.<n>Our experiments with standard MARL algorithms reveal that, even in trivial cases, policies often fail to converge to an optimal solution.<n>Future research must prioritize realistic benchmarks, cautious deployment strategies, and tools for monitoring and regulating AV routing behaviors.
arXiv Detail & Related papers (2025-02-18T13:37:02Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - From Imitation to Exploration: End-to-end Autonomous Driving based on World Model [24.578178308010912]
RAMBLE is an end-to-end world model-based RL method for driving decision-making.<n>It can handle complex and dynamic traffic scenarios.<n>It achieves state-of-the-art performance in route completion rate on the CARLA Leaderboard 1.0 and completes all 38 scenarios on the CARLA Leaderboard 2.0.
arXiv Detail & Related papers (2024-10-03T06:45:59Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z) - Pareto Deterministic Policy Gradients and Its Application in 5G Massive
MIMO Networks [32.099949375036495]
We consider jointly optimizing cell load balance and network throughput via a reinforcement learning (RL) approach.
Our rationale behind using RL is to circumvent the challenges of analytically modeling user mobility and network dynamics.
To accomplish this joint optimization, we integrate vector rewards into the RL value network and conduct RL action via a separate policy network.
arXiv Detail & Related papers (2020-12-02T15:35:35Z) - Decentralized Deep Reinforcement Learning for Network Level Traffic
Signal Control [0.8838408191955874]
I propose a family of fully decentralized deep multi-agent reinforcement learning (MARL) algorithms to achieve high, real-time performance in traffic signal control.
Each intersection is modeled as an agent that plays a Markovian Game against the other intersection nodes.
Experiment results show that S2R2L has a quicker convergence rate and better convergent performance than IDQL and S2RL in the training process.
arXiv Detail & Related papers (2020-07-02T06:58:27Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.