Regional climate projections using a deep-learning-based model-ranking and downscaling framework: Application to European climate zones
- URL: http://arxiv.org/abs/2502.20132v2
- Date: Fri, 28 Feb 2025 11:32:03 GMT
- Title: Regional climate projections using a deep-learning-based model-ranking and downscaling framework: Application to European climate zones
- Authors: Parthiban Loganathan, Elias Zea, Ricardo Vinuesa, Evelyn Otero,
- Abstract summary: This work presents a deep-learning-based multi-model evaluation and downscaling framework ranking 32 Coupled Model Intercomparison Project Phase 6 (CMIP6) models.<n>Tropical, Arid, Temperate, Continental, and Polar climate zones are investigated over four seasons.<n>Four models contribute to downscaling the top-ranked GCMs to 0.1$circ$ resolution.
- Score: 0.8437187555622164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate regional climate forecast calls for high-resolution downscaling of Global Climate Models (GCMs). This work presents a deep-learning-based multi-model evaluation and downscaling framework ranking 32 Coupled Model Intercomparison Project Phase 6 (CMIP6) models using a Deep Learning-TOPSIS (DL-TOPSIS) mechanism and so refines outputs using advanced deep-learning models. Using nine performance criteria, five K\"oppen-Geiger climate zones -- Tropical, Arid, Temperate, Continental, and Polar -- are investigated over four seasons. While TaiESM1 and CMCC-CM2-SR5 show notable biases, ranking results show that NorESM2-LM, GISS-E2-1-G, and HadGEM3-GC31-LL outperform other models. Four models contribute to downscaling the top-ranked GCMs to 0.1$^{\circ}$ resolution: Vision Transformer (ViT), Geospatial Spatiotemporal Transformer with Attention and Imbalance-Aware Network (GeoSTANet), CNN-LSTM, and CNN-Long Short-Term Memory (ConvLSTM). Effectively capturing temperature extremes (TXx, TNn), GeoSTANet achieves the highest accuracy (Root Mean Square Error (RMSE) = 1.57$^{\circ}$C, Kling-Gupta Efficiency (KGE) = 0.89, Nash-Sutcliffe Efficiency (NSE) = 0.85, Correlation ($r$) = 0.92), so reducing RMSE by 20% over ConvLSTM. CNN-LSTM and ConvLSTM do well in Continental and Temperate zones; ViT finds fine-scale temperature fluctuations difficult. These results confirm that multi-criteria ranking improves GCM selection for regional climate studies and transformer-based downscaling exceeds conventional deep-learning methods. This framework offers a scalable method to enhance high-resolution climate projections, benefiting impact assessments and adaptation plans.
Related papers
- Global Climate Model Bias Correction Using Deep Learning [0.4972323953932129]
Climate change affects ocean temperature, salinity and sea level, impacting monsoons and ocean productivity.
Future projections by Global Climate Models are widely used to understand the effects of climate change.
However, CMIP models have significant bias compared to reanalysis in the Bay of Bengal for the time period when both projections and reanalysis are available.
We develop a suite of data-driven deep learning models for bias correction of climate model projections and apply it to correct SST projections of the Bay of Bengal.
arXiv Detail & Related papers (2025-04-27T07:56:57Z) - A Mechanism-Learning Deeply Coupled Model for Remote Sensing Retrieval of Global Land Surface Temperature [17.57893699503326]
Land surface temperature (LST) retrieval from remote sensing data is pivotal for analyzing climate processes and surface energy budgets.
In this paper, we propose a deeply coupled framework integrating mechanistic modeling and machine learning to enhance the accuracy and generalizability of single-channel LST retrieval.
arXiv Detail & Related papers (2025-04-10T06:19:01Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models [56.00251589760559]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.<n>We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.<n>Experiments indicate that LM-GC surpasses existing state-of-the-art lossless compression methods.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - RAIN: Reinforcement Algorithms for Improving Numerical Weather and Climate Models [0.0]
Current climate models rely on complex mathematical parameterisations to represent sub-grid scale processes.
This study explores integrating reinforcement learning with idealised climate models to address key parameterisation challenges.
arXiv Detail & Related papers (2024-08-28T20:10:46Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - The impact of internal variability on benchmarking deep learning climate emulators [2.3342885570554652]
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways.
More efficient emulators that approximate ESMs can directly map emissions onto climate datasets.
We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance.
arXiv Detail & Related papers (2024-08-09T18:17:17Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Machine-learned climate model corrections from a global storm-resolving
model [0.0]
We train neural networks to learn the state-dependent temperature, humidity, and radiative flux corrections needed to nudge a 200 km climate model to the evolution of a 3km fine-grid storm-resolving model (GSRM)
When these corrective ML models are coupled to a year-long coarse-grid climate simulation, the time-mean spatial pattern errors are reduced by 6-25% for land surface temperature and 9-25% for land surface precipitation.
arXiv Detail & Related papers (2022-11-21T19:39:05Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - Statistical Downscaling of Temperature Distributions from the Synoptic
Scale to the Mesoscale Using Deep Convolutional Neural Networks [0.0]
One of the promising applications is developing a statistical surrogate model that converts the output images of low-resolution dynamic models to high-resolution images.
Our study evaluates a surrogate model that downscales synoptic temperature fields to mesoscale temperature fields every 6 hours.
If the surrogate models are implemented at short time intervals, they will provide high-resolution weather forecast guidance or environment emergency alerts at low cost.
arXiv Detail & Related papers (2020-07-20T06:24:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.