Telephone Surveys Meet Conversational AI: Evaluating a LLM-Based Telephone Survey System at Scale
- URL: http://arxiv.org/abs/2502.20140v2
- Date: Wed, 12 Mar 2025 00:52:23 GMT
- Title: Telephone Surveys Meet Conversational AI: Evaluating a LLM-Based Telephone Survey System at Scale
- Authors: Max M. Lang, Sol Eskenazi,
- Abstract summary: This presents an AI-driven telephone survey system integrating text-to-speech (TTS), a large language model (LLM), and speech-to-speech (STT)<n>We tested the system across two populations, a pilot study in the United States (n = 75) and a large-scale deployment in Peru (n = 2,739)<n>Our findings demonstrate that while the AI system's probing for qualitative depth was more limited than human interviewers, overall data quality approached human-led standards for structured items.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Telephone surveys remain a valuable tool for gathering insights but typically require substantial resources in training and coordinating human interviewers. This work presents an AI-driven telephone survey system integrating text-to-speech (TTS), a large language model (LLM), and speech-to-text (STT) that mimics the versatility of human-led interviews (full-duplex dialogues) at scale. We tested the system across two populations, a pilot study in the United States (n = 75) and a large-scale deployment in Peru (n = 2,739), inviting participants via web-based links and contacting them via direct phone calls. The AI agent successfully administered open-ended and closed-ended questions, handled basic clarifications, and dynamically navigated branching logic, allowing fast large-scale survey deployment without interviewer recruitment or training. Our findings demonstrate that while the AI system's probing for qualitative depth was more limited than human interviewers, overall data quality approached human-led standards for structured items. This study represents one of the first successful large-scale deployments of an LLM-based telephone interviewer in a real-world survey context. The AI-powered telephone survey system has the potential for expanding scalable, consistent data collecting across market research, social science, and public opinion studies, thus improving operational efficiency while maintaining appropriate data quality for research.
Related papers
- Automated Survey Collection with LLM-based Conversational Agents [1.9915268274949234]
Traditional phone-based surveys are among the most accessible and widely used methods to collect biomedical and healthcare data.
We propose an end-to-end survey collection framework driven by conversational Large Language Models (LLMs)
Our framework consists of a researcher responsible for designing the survey and recruiting participants, a conversational phone agent powered by an LLM that calls participants and administers the survey, a second LLM that analyzes the conversation transcripts generated during the surveys, and a database for storing and organizing the results.
arXiv Detail & Related papers (2025-04-02T18:10:19Z) - Towards Anthropomorphic Conversational AI Part I: A Practical Framework [49.62013440962072]
We introduce a multi- module framework designed to replicate the key aspects of human intelligence involved in conversations.
In the second stage of our approach, these conversational data, after filtering and labeling, can serve as training and testing data for reinforcement learning.
arXiv Detail & Related papers (2025-02-28T03:18:39Z) - Toward Agentic AI: Generative Information Retrieval Inspired Intelligent Communications and Networking [87.82985288731489]
Agentic AI has emerged as a key paradigm for intelligent communications and networking.<n>This article emphasizes the role of knowledge acquisition, processing, and retrieval in agentic AI for telecom systems.
arXiv Detail & Related papers (2025-02-24T06:02:25Z) - Are Large Language Models Ready for Business Integration? A Study on Generative AI Adoption [0.6144680854063939]
This research examines the readiness of other Large Language Models (LLMs) such as Google Gemini for potential business applications.
A dataset of 42,654 reviews from distinct Disneyland branches was employed.
Results presented a spectrum of responses, including 75% successful simplifications, 25% errors, and instances of model self-reference.
arXiv Detail & Related papers (2025-01-28T21:01:22Z) - NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
We focus on journalistic interviews, a domain rich in grounding communication and abundant in data.
We curate a dataset of 40,000 two-person informational interviews from NPR and CNN.
LLMs are significantly less likely than human interviewers to use acknowledgements and to pivot to higher-level questions.
arXiv Detail & Related papers (2024-11-21T01:37:38Z) - AI Conversational Interviewing: Transforming Surveys with LLMs as Adaptive Interviewers [40.80290002598963]
This study explores the potential of replacing human interviewers with large language models (LLMs) to conduct scalable conversational interviews.
We conducted a small-scale, in-depth study with university students who were randomly assigned to be interviewed by either AI or human interviewers.
Various quantitative and qualitative measures assessed interviewer adherence to guidelines, response quality, participant engagement, and overall interview efficacy.
arXiv Detail & Related papers (2024-09-16T16:03:08Z) - Making Task-Oriented Dialogue Datasets More Natural by Synthetically Generating Indirect User Requests [6.33281463741573]
Indirect User Requests (IURs) are common in human-human task-oriented dialogue and require world knowledge and pragmatic reasoning from the listener.
While large language models (LLMs) can handle these requests effectively, smaller models deployed on virtual assistants often struggle due to resource constraints.
arXiv Detail & Related papers (2024-06-12T01:18:04Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - Can AI Serve as a Substitute for Human Subjects in Software Engineering
Research? [24.39463126056733]
This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI)
We explore the potential of AI-generated synthetic text as an alternative source of qualitative data.
We discuss the prospective development of new foundation models aimed at emulating human behavior in observational studies and user evaluations.
arXiv Detail & Related papers (2023-11-18T14:05:52Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
Large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence.<n>This paper delivers a systematic review of the field of LLM-based autonomous agents from a holistic perspective.<n>We present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering.
arXiv Detail & Related papers (2023-08-22T13:30:37Z) - AutoConv: Automatically Generating Information-seeking Conversations
with Large Language Models [74.10293412011455]
We propose AutoConv for synthetic conversation generation.
Specifically, we formulate the conversation generation problem as a language modeling task.
We finetune an LLM with a few human conversations to capture the characteristics of the information-seeking process.
arXiv Detail & Related papers (2023-08-12T08:52:40Z) - Information Extraction and Human-Robot Dialogue towards Real-life Tasks:
A Baseline Study with the MobileCS Dataset [52.22314870976088]
The SereTOD challenge is organized and releases the MobileCS dataset, which consists of real-world dialog transcripts between real users and customer-service staffs from China Mobile.
Based on the MobileCS dataset, the SereTOD challenge has two tasks, not only evaluating the construction of the dialogue system itself, but also examining information extraction from dialog transcripts.
This paper mainly presents a baseline study of the two tasks with the MobileCS dataset.
arXiv Detail & Related papers (2022-09-27T15:30:43Z) - INSCIT: Information-Seeking Conversations with Mixed-Initiative
Interactions [47.90088587508672]
InSCIt is a dataset for Information-Seeking Conversations with mixed-initiative Interactions.
It contains 4.7K user-agent turns from 805 human-human conversations.
We report results of two systems based on state-of-the-art models of conversational knowledge identification and open-domain question answering.
arXiv Detail & Related papers (2022-07-02T06:18:12Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts.
We propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogue flows.
Our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering.
arXiv Detail & Related papers (2022-04-29T17:56:59Z) - Evaluating Mixed-initiative Conversational Search Systems via User
Simulation [9.066817876491053]
We propose a conversational User Simulator, called USi, for automatic evaluation of such search systems.
We show that responses generated by USi are both inline with the underlying information need and comparable to human-generated answers.
arXiv Detail & Related papers (2022-04-17T16:27:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.