論文の概要: Evaluating Human Trust in LLM-Based Planners: A Preliminary Study
- arxiv url: http://arxiv.org/abs/2502.20284v1
- Date: Thu, 27 Feb 2025 17:10:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:21.489915
- Title: Evaluating Human Trust in LLM-Based Planners: A Preliminary Study
- Title(参考訳): LLMプランナーの信頼度評価 : 予備研究
- Authors: Shenghui Chen, Yunhao Yang, Kayla Boggess, Seongkook Heo, Lu Feng, Ufuk Topcu,
- Abstract要約: 大きな言語モデル(LLM)は、計画タスクにますます使われています。
本研究では,計画ドメイン定義言語(PDDL)ドメインのユーザスタディを通じて,LLMベースのプランナと古典的なプランナの人間信頼を比較した。
- 参考スコア(独自算出の注目度): 23.295326953639467
- License:
- Abstract: Large Language Models (LLMs) are increasingly used for planning tasks, offering unique capabilities not found in classical planners such as generating explanations and iterative refinement. However, trust--a critical factor in the adoption of planning systems--remains underexplored in the context of LLM-based planning tasks. This study bridges this gap by comparing human trust in LLM-based planners with classical planners through a user study in a Planning Domain Definition Language (PDDL) domain. Combining subjective measures, such as trust questionnaires, with objective metrics like evaluation accuracy, our findings reveal that correctness is the primary driver of trust and performance. Explanations provided by the LLM improved evaluation accuracy but had limited impact on trust, while plan refinement showed potential for increasing trust without significantly enhancing evaluation accuracy.
- Abstract(参考訳): 大規模言語モデル(LLM)は計画タスクにますます使われており、説明の生成や反復的な洗練といった古典的なプランナーには見られないユニークな機能を提供する。
しかし、信頼は計画システムの導入において重要な要素であり、LLMベースの計画タスクの文脈で過小評価されている。
本研究は, 計画ドメイン定義言語(PDDL)ドメインにおけるユーザスタディを通じて, LLMベースのプランナーと古典的なプランナーとの信頼関係を比較することによって, このギャップを埋めるものである。
信頼アンケートなどの主観的尺度と評価精度などの客観的指標を組み合わせることで,信頼性が信頼とパフォーマンスの主要な要因であることが判明した。
LLMによる説明では、評価精度は向上したが、信頼への影響は限定的であったが、計画改善は信頼性を著しく向上させることなく、信頼を高める可能性を示した。
関連論文リスト
- PredictaBoard: Benchmarking LLM Score Predictability [50.47497036981544]
大きな言語モデル(LLM)は予測不能に失敗することが多い。
これは、安全なデプロイメントを保証する上で、大きな課題となる。
PredictaBoardは,新しいベンチマークフレームワークである。
論文 参考訳(メタデータ) (2025-02-20T10:52:38Z) - An Empirical Analysis of Uncertainty in Large Language Model Evaluations [28.297464655099034]
我々は2つの異なる評価条件で9つのLLM評価器を用いた実験を行った。
LLM評価器はモデルファミリやサイズによって様々な不確実性を示す。
推論やポストトレーニングのときでも、特別なプロンプト戦略を採用することで、評価の不確実性をある程度軽減できることがわかった。
論文 参考訳(メタデータ) (2025-02-15T07:45:20Z) - Aligning Large Language Models for Faithful Integrity Against Opposing Argument [71.33552795870544]
大規模言語モデル(LLM)は複雑な推論タスクにおいて印象的な機能を示している。
原文が正しい場合でも、会話中に不誠実な議論によって容易に誤解される。
本稿では,信頼度と信頼度を両立させる新しい枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-02T16:38:21Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners [10.746821861109176]
大型言語モデル(LLM)は、ロボットタスクのためのゼロショットタスクプランナーとして、目覚ましいパフォーマンスをみせている。
しかし、以前の研究のオープンループの性質は、LSMベースの計画がエラーを起こしやすく、脆弱である。
本研究では,不確実性に基づくMLLM故障検出装置をベースとした,閉ループLLMに基づくKnowLoop計画のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T12:52:06Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelfは、大規模言語モデルに、より正確なきめ細かな信頼推定を表現するためのトレーニングフレームワークである。
さらに、SaySelf は LLM に対して、パラメトリック知識のギャップを明確に識別する自己反射的合理性を生成するよう指示する。
生成した自己反射的理性は合理的であり、キャリブレーションにさらに貢献できることを示す。
論文 参考訳(メタデータ) (2024-05-31T16:21:16Z) - FedEval-LLM: Federated Evaluation of Large Language Models on Downstream Tasks with Collective Wisdom [19.104850413126066]
大規模言語モデル(LLM)の協調学習のための有望なソリューションとして、フェデレートラーニング(FL)が登場した。
ラベル付きテストセットと類似度に基づくメトリクスに依存する従来の評価手法は、許容できる答えのサブセットのみをカバーする。
我々は、ラベル付きテストセットや外部ツールに依存することなく、下流タスクにおけるLCMの信頼性の高い性能測定を提供するFedEval-LLMを提案する。
論文 参考訳(メタデータ) (2024-04-18T15:46:26Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - TrustLLM: Trustworthiness in Large Language Models [446.5640421311468]
本稿では,大規模言語モデル(LLM)における信頼度に関する総合的研究であるTrustLLMを紹介する。
まず、8つの異なる次元にまたがる信頼性の高いLCMの原則を提案する。
これらの原則に基づいて、真理性、安全性、公正性、堅牢性、プライバシ、機械倫理を含む6つの次元にわたるベンチマークを確立します。
論文 参考訳(メタデータ) (2024-01-10T22:07:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。