論文の概要: Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
- arxiv url: http://arxiv.org/abs/2502.20317v3
- Date: Mon, 10 Mar 2025 14:43:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:44:05.859127
- Title: Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
- Title(参考訳): テキストリッチグラフ知識ベースを用いた構造・テキスト検索の混合
- Authors: Yongjia Lei, Haoyu Han, Ryan A. Rossi, Franck Dernoncourt, Nedim Lipka, Mahantesh M Halappanavar, Jiliang Tang, Yu Wang,
- Abstract要約: テキストリッチなグラフ知識ベース(TG-KB)は、テキストおよび構造的知識を提供することで、クエリに応答する上でますます重要になっている。
本研究では,これら2種類の知識を計画・推論・組織化フレームワークを用いて検索するための構造・テキスト検索(MoR)の混合を提案する。
- 参考スコア(独自算出の注目度): 78.62158923194153
- License:
- Abstract: Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
- Abstract(参考訳): テキストリッチなグラフ知識ベース(TG-KB)は、テキストおよび構造的知識を提供することで、クエリに応答する上でますます重要になっている。
しかし、現在の検索手法は、相互強化を考慮せずにこれらの2種類の知識を分離して検索することが多く、隣接する集約後に完全に構造的検索をバイパスするハイブリッド手法もある。
このギャップを埋めるために,これらの2種類の知識をプランニング・推論・組織化フレームワークを用いて検索するための構造・テキスト検索(MoR)の混合を提案する。
計画段階では、MoRはクエリに応答するロジックを記述したテキストプランニンググラフを生成する。
計画グラフに続いて、Reasoningの段階では、MoRはTG-KBから候補を得るために構造的トラバーサルとテキストマッチングを織り込む。
組織化段階において、MoRは、その構造的軌道に基づいてフェッチされた候補をさらに再帰する。
広範囲にわたる実験は、構造的およびテキスト的検索と洞察との調和におけるMoRの優位性を実証している。
私たちのコードはhttps://github.com/Yoega/MoR.comで公開されています。
関連論文リスト
- RiTeK: A Dataset for Large Language Models Complex Reasoning over Textual Knowledge Graphs [12.846097618151951]
我々は,テキスト知識グラフ(RiTeK)を用いたLLMの複雑な推論のためのデータセットを開発し,広範なトポロジ的構造を網羅する。
多様なトポロジ構造、注釈付き情報、複雑なテキスト記述を統合した現実的なユーザクエリを合成する。
そこで我々はモンテカルロ木探索法 (CTS) を導入し, 特定のクエリに対してテキストグラフから関係経路情報を自動的に抽出する手法を提案する。
論文 参考訳(メタデータ) (2024-10-17T19:33:37Z) - Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
知識グラフ(KG)から構造化文書関係を付加したLLMを拡張した知識対応クエリ拡張フレームワークを提案する。
文書テキストをリッチなKGノード表現として活用し、KAR(Knowledge-Aware Retrieval)のための文書ベースの関係フィルタリングを利用する。
論文 参考訳(メタデータ) (2024-10-17T17:03:23Z) - Augmenting Textual Generation via Topology Aware Retrieval [30.933176170660683]
トポロジを意識した検索型検索生成フレームワークを開発した。
このフレームワークは、トポロジ的関係に基づいてテキストを選択する検索モジュールを含む。
我々は,確立したテキスト配信ネットワークをキュレートし,本フレームワークの有効性を検証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2024-05-27T19:02:18Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
テキストと知識ベースを用いた大規模半構造検索ベンチマークSTARKを開発した。
本ベンチマークでは, 製品検索, 学術論文検索, 精密医療におけるクエリの3分野について検討した。
多様なリレーショナル情報と複雑なテキスト特性を統合した,現実的なユーザクエリを合成する,新しいパイプラインを設計する。
論文 参考訳(メタデータ) (2024-04-19T22:54:54Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Decomposing Complex Queries for Tip-of-the-tongue Retrieval [72.07449449115167]
複雑なクエリは、コンテンツ要素(例えば、書籍の文字やイベント)、ドキュメントテキスト以外の情報を記述する。
この検索設定は舌の先端 (TOT) と呼ばれ、クエリと文書テキスト間の語彙的および意味的重複に依存するモデルでは特に困難である。
クエリを個別のヒントに分解し、サブクエリとしてルーティングし、特定の検索者にルーティングし、結果をアンサンブルすることで、このような複雑なクエリを扱うための、シンプルで効果的なフレームワークを導入します。
論文 参考訳(メタデータ) (2023-05-24T11:43:40Z) - VEM$^2$L: A Plug-and-play Framework for Fusing Text and Structure
Knowledge on Sparse Knowledge Graph Completion [14.537509860565706]
本稿では,テキストから抽出した知識と構造化メッセージから抽出した知識を統一化するための,スパース知識グラフ上のプラグイン・アンド・プレイ・フレームワーク VEM2L を提案する。
具体的には、モデルによって得られた知識を2つの非重複部分に分割する。
また、モデルの一般化能力を融合させるために、変分EMアルゴリズムによって証明された新しい融合戦略を提案する。
論文 参考訳(メタデータ) (2022-07-04T15:50:21Z) - On Incorporating Structural Information to improve Dialogue Response
Generation [28.717780439553216]
ドメイン固有のリソースからなる背景知識から対話応答を生成するタスクを考察する。
これは、会話コンテキストとバックグラウンドリソースから構造的、シーケンシャル、セマンティックな情報をキャプチャする必要がある。
本稿では,BERT を用いて,明示的な構造やシーケンス情報とともに,文脈の深い表現をキャプチャする新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-05-28T22:06:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。