ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model
- URL: http://arxiv.org/abs/2502.20323v2
- Date: Fri, 28 Feb 2025 13:25:53 GMT
- Title: ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model
- Authors: Xuangeng Chu, Nabarun Goswami, Ziteng Cui, Hanqin Wang, Tatsuya Harada,
- Abstract summary: Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips.<n>We introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks.
- Score: 41.35209566957009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips. Although existing diffusion-based methods are capable of producing natural motions, their slow generation speed limits their application potential. In this paper, we introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks by learning a mapping from speech to a multi-scale motion codebook. Furthermore, our model can adapt to unseen speaking styles using sample motion sequences, enabling the creation of 3D talking avatars with unique personal styles beyond the identities seen during training. Extensive evaluations and user studies demonstrate that our method outperforms existing approaches in lip synchronization accuracy and perceived quality.
Related papers
- GaussianSpeech: Audio-Driven Gaussian Avatars [76.10163891172192]
We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio.<n>We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details.
arXiv Detail & Related papers (2024-11-27T18:54:08Z) - Mimic: Speaking Style Disentanglement for Speech-Driven 3D Facial
Animation [41.489700112318864]
Speech-driven 3D facial animation aims to synthesize vivid facial animations that accurately synchronize with speech and match the unique speaking style.
We introduce an innovative speaking style disentanglement method, which enables arbitrary-subject speaking style encoding.
We also propose a novel framework called textbfMimic to learn disentangled representations of the speaking style and content from facial motions.
arXiv Detail & Related papers (2023-12-18T01:49:42Z) - 3DiFACE: Diffusion-based Speech-driven 3D Facial Animation and Editing [22.30870274645442]
We present 3DiFACE, a novel method for personalized speech-driven 3D facial animation and editing.
Our method outperforms existing state-of-the-art techniques and yields speech-driven animations with greater fidelity and diversity.
arXiv Detail & Related papers (2023-12-01T19:01:05Z) - DiffusionTalker: Personalization and Acceleration for Speech-Driven 3D
Face Diffuser [12.576421368393113]
Speech-driven 3D facial animation has been an attractive task in academia and industry.
Recent approaches start to consider the non-deterministic fact of speech-driven 3D face animation and employ the diffusion model for the task.
We propose DiffusionTalker, a diffusion-based method that utilizes contrastive learning to personalize 3D facial animation and knowledge distillation to accelerate 3D animation generation.
arXiv Detail & Related papers (2023-11-28T07:13:20Z) - DF-3DFace: One-to-Many Speech Synchronized 3D Face Animation with
Diffusion [68.85904927374165]
We propose DF-3DFace, a diffusion-driven speech-to-3D face mesh synthesis.
It captures the complex one-to-many relationships between speech and 3D face based on diffusion.
It simultaneously achieves more realistic facial animation than the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-23T04:14:55Z) - Audio-Driven 3D Facial Animation from In-the-Wild Videos [16.76533748243908]
Given an arbitrary audio clip, audio-driven 3D facial animation aims to generate lifelike lip motions and facial expressions for a 3D head.
Existing methods typically rely on training their models using limited public 3D datasets that contain a restricted number of audio-3D scan pairs.
We propose a novel method that leverages in-the-wild 2D talking-head videos to train our 3D facial animation model.
arXiv Detail & Related papers (2023-06-20T13:53:05Z) - Imitator: Personalized Speech-driven 3D Facial Animation [63.57811510502906]
State-of-the-art methods deform the face topology of the target actor to sync the input audio without considering the identity-specific speaking style and facial idiosyncrasies of the target actor.
We present Imitator, a speech-driven facial expression synthesis method, which learns identity-specific details from a short input video.
We show that our approach produces temporally coherent facial expressions from input audio while preserving the speaking style of the target actors.
arXiv Detail & Related papers (2022-12-30T19:00:02Z) - Generating Holistic 3D Human Motion from Speech [97.11392166257791]
We build a high-quality dataset of 3D holistic body meshes with synchronous speech.
We then define a novel speech-to-motion generation framework in which the face, body, and hands are modeled separately.
arXiv Detail & Related papers (2022-12-08T17:25:19Z) - A Novel Speech-Driven Lip-Sync Model with CNN and LSTM [12.747541089354538]
We present a combined deep neural network of one-dimensional convolutions and LSTM to generate displacement of a 3D template face model from variable-length speech input.
In order to enhance the robustness of the network to different sound signals, we adapt a trained speech recognition model to extract speech feature.
We show that our model is able to generate smooth and natural lip movements synchronized with speech.
arXiv Detail & Related papers (2022-05-02T13:57:50Z) - MeshTalk: 3D Face Animation from Speech using Cross-Modality
Disentanglement [142.9900055577252]
We propose a generic audio-driven facial animation approach that achieves highly realistic motion synthesis results for the entire face.
Our approach ensures highly accurate lip motion, while also plausible animation of the parts of the face that are uncorrelated to the audio signal, such as eye blinks and eye brow motion.
arXiv Detail & Related papers (2021-04-16T17:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.