Model See Model Do: Speech-Driven Facial Animation with Style Control
- URL: http://arxiv.org/abs/2505.01319v2
- Date: Tue, 15 Jul 2025 16:48:15 GMT
- Title: Model See Model Do: Speech-Driven Facial Animation with Style Control
- Authors: Yifang Pan, Karan Singh, Luiz Gustavo Hafemann,
- Abstract summary: Speech-driven 3D facial animation plays a key role in applications such as virtual avatars, gaming, and digital content creation.<n>Existing methods have made significant progress in achieving accurate lip synchronization and generating basic emotional expressions.<n>We propose a novel example-based generation framework that conditions a latent diffusion model on a reference style clip.
- Score: 14.506128477193991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech-driven 3D facial animation plays a key role in applications such as virtual avatars, gaming, and digital content creation. While existing methods have made significant progress in achieving accurate lip synchronization and generating basic emotional expressions, they often struggle to capture and effectively transfer nuanced performance styles. We propose a novel example-based generation framework that conditions a latent diffusion model on a reference style clip to produce highly expressive and temporally coherent facial animations. To address the challenge of accurately adhering to the style reference, we introduce a novel conditioning mechanism called style basis, which extracts key poses from the reference and additively guides the diffusion generation process to fit the style without compromising lip synchronization quality. This approach enables the model to capture subtle stylistic cues while ensuring that the generated animations align closely with the input speech. Extensive qualitative, quantitative, and perceptual evaluations demonstrate the effectiveness of our method in faithfully reproducing the desired style while achieving superior lip synchronization across various speech scenarios.
Related papers
- Shushing! Let's Imagine an Authentic Speech from the Silent Video [15.426152742881365]
Vision-guided speech generation aims to produce authentic speech from facial appearance or lip motions without relying on auditory signals.<n>Despite recent progress, existing methods struggle to achieve unified cross-modal alignment across semantics, timbre, and emotional prosody from visual cues.<n>We introduce ImaginTalk, a novel cross-modal diffusion framework that generates faithful speech using only visual input.
arXiv Detail & Related papers (2025-03-19T06:28:17Z) - ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model [41.35209566957009]
Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips.<n>We introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks.
arXiv Detail & Related papers (2025-02-27T17:49:01Z) - MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes [74.82911268630463]
Talking face generation (TFG) aims to animate a target identity's face to create realistic talking videos.
MimicTalk exploits the rich knowledge from a NeRF-based person-agnostic generic model for improving the efficiency and robustness of personalized TFG.
Experiments show that our MimicTalk surpasses previous baselines regarding video quality, efficiency, and expressiveness.
arXiv Detail & Related papers (2024-10-09T10:12:37Z) - SVP: Style-Enhanced Vivid Portrait Talking Head Diffusion Model [64.28263381647628]
Talking Head Generation (THG) is an important task with broad application prospects in various fields such as digital humans, film production, and virtual reality.<n>We propose a novel framework named Style-Enhanced Vivid Portrait (SVP) which fully leverages style-related information in THG.<n>Our model generates diverse, vivid, and high-quality videos with flexible control over intrinsic styles, outperforming existing state-of-the-art methods.
arXiv Detail & Related papers (2024-09-05T06:27:32Z) - High-fidelity and Lip-synced Talking Face Synthesis via Landmark-based Diffusion Model [89.29655924125461]
We propose a novel landmark-based diffusion model for talking face generation.
We first establish the less ambiguous mapping from audio to landmark motion of lip and jaw.
Then, we introduce an innovative conditioning module called TalkFormer to align the synthesized motion with the motion represented by landmarks.
arXiv Detail & Related papers (2024-08-10T02:58:28Z) - Style-Preserving Lip Sync via Audio-Aware Style Reference [88.02195932723744]
Individuals exhibit distinct lip shapes when speaking the same utterance, attributed to the unique speaking styles of individuals.
We develop an advanced Transformer-based model adept at predicting lip motion corresponding to the input audio, augmented by the style information aggregated through cross-attention layers from style reference video.
Experiments validate the efficacy of the proposed approach in achieving precise lip sync, preserving speaking styles, and generating high-fidelity, realistic talking face videos.
arXiv Detail & Related papers (2024-08-10T02:46:11Z) - Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation [29.87407471246318]
This research delves into the complexities of synchronizing facial movements and creating visually appealing, temporally consistent animations.
Our innovative approach embraces the end-to-end diffusion paradigm and introduces a hierarchical audio-driven visual synthesis module.
The proposed hierarchical audio-driven visual synthesis offers adaptive control over expression and pose diversity, enabling more effective personalization tailored to different identities.
arXiv Detail & Related papers (2024-06-13T04:33:20Z) - From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations [107.88375243135579]
Given speech audio, we output multiple possibilities of gestural motion for an individual, including face, body, and hands.
We visualize the generated motion using highly photorealistic avatars that can express crucial nuances in gestures.
Experiments show our model generates appropriate and diverse gestures, outperforming both diffusion- and VQ-only methods.
arXiv Detail & Related papers (2024-01-03T18:55:16Z) - Mimic: Speaking Style Disentanglement for Speech-Driven 3D Facial
Animation [41.489700112318864]
Speech-driven 3D facial animation aims to synthesize vivid facial animations that accurately synchronize with speech and match the unique speaking style.
We introduce an innovative speaking style disentanglement method, which enables arbitrary-subject speaking style encoding.
We also propose a novel framework called textbfMimic to learn disentangled representations of the speaking style and content from facial motions.
arXiv Detail & Related papers (2023-12-18T01:49:42Z) - VAST: Vivify Your Talking Avatar via Zero-Shot Expressive Facial Style Transfer [44.39474584573651]
This paper proposes an unsupervised variational style transfer model (VAST) to vivify the neutral photo-realistic avatars.
Our model consists of three key components: a style encoder that extracts facial style representations from the given video prompts; a hybrid facial expression decoder to model accurate speech-related movements.
With our essential designs on facial style learning, our model is able to flexibly capture the expressive style from arbitrary video prompts and transfer it onto a personalized image in a zero-shot manner.
arXiv Detail & Related papers (2023-08-09T09:38:14Z) - Imitator: Personalized Speech-driven 3D Facial Animation [63.57811510502906]
State-of-the-art methods deform the face topology of the target actor to sync the input audio without considering the identity-specific speaking style and facial idiosyncrasies of the target actor.
We present Imitator, a speech-driven facial expression synthesis method, which learns identity-specific details from a short input video.
We show that our approach produces temporally coherent facial expressions from input audio while preserving the speaking style of the target actors.
arXiv Detail & Related papers (2022-12-30T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.