Towards Responsible AI in Education: Hybrid Recommendation System for K-12 Students Case Study
- URL: http://arxiv.org/abs/2502.20354v1
- Date: Thu, 27 Feb 2025 18:27:30 GMT
- Title: Towards Responsible AI in Education: Hybrid Recommendation System for K-12 Students Case Study
- Authors: Nazarii Drushchak, Vladyslava Tyshchenko, Nataliya Polyakovska,
- Abstract summary: This study presents a recommendation system for K-12 students, combining graph-based modeling and matrix factorization.<n>To address fairness concerns, the system includes a framework to detect and reduce biases by analyzing feedback across protected student groups.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growth of Educational Technology (EdTech) has enabled highly personalized learning experiences through Artificial Intelligence (AI)-based recommendation systems tailored to each student needs. However, these systems can unintentionally introduce biases, potentially limiting fair access to learning resources. This study presents a recommendation system for K-12 students, combining graph-based modeling and matrix factorization to provide personalized suggestions for extracurricular activities, learning resources, and volunteering opportunities. To address fairness concerns, the system includes a framework to detect and reduce biases by analyzing feedback across protected student groups. This work highlights the need for continuous monitoring in educational recommendation systems to support equitable, transparent, and effective learning opportunities for all students.
Related papers
- Advancing Education through Tutoring Systems: A Systematic Literature Review [3.276010440333338]
This study systematically reviews the transformative role of Tutoring Systems, encompassing Intelligent Tutoring Systems (ITS) and Robot Tutoring Systems (RTS)
The findings reveal significant advancements in AI techniques that enhance adaptability, engagement, and learning outcomes.
The study highlights the complementary strengths of ITS and RTS, proposing integrated hybrid solutions to maximize educational benefits.
arXiv Detail & Related papers (2025-03-12T18:47:07Z) - DMP_AI: An AI-Aided K-12 System for Teaching and Learning in Diverse Schools [7.618511269608216]
The use of Artificial Intelligence (AI) in K-12 education is still in its nascent stages.<n>The development of this system has been meticulously carried out while prioritizing user privacy.<n>This system will serve as a valuable resource for supporting educators in providing effective and inclusive K-12 education.
arXiv Detail & Related papers (2024-12-04T13:10:14Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Ontology-driven Reinforcement Learning for Personalized Student Support [1.8972913066829966]
This paper presents a general-purpose framework for personalized student support, applicable to any virtual educational system.
We apply for their semantic organization, combining them with data collection considerations and multi-agent reinforcement learning.
The result is a modular system that can be adapted to any virtual educational software to provide useful personalized assistance to students.
arXiv Detail & Related papers (2024-07-14T21:11:44Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - Combining Gamification and Intelligent Tutoring Systems in a Serious
Game for Engineering Education [2.792030485253753]
We provide ongoing results from the development of a personalized learning system integrated into a serious game.
Using computational intelligence, the system adaptively provides support to students based on data collected from both their in-game actions and by estimating their emotional state from webcam images.
We demonstrate the system's educational efficacy through pre-post-test results from students who played the game with and without the personalized learning system.
arXiv Detail & Related papers (2023-05-26T01:24:19Z) - Towards a General Pre-training Framework for Adaptive Learning in MOOCs [37.570119583573955]
We propose a unified framework based on data observation and learning style analysis, properly leveraging heterogeneous learning elements.
We find that course structures, text, and knowledge are helpful for modeling and inherently coherent to student non-sequential learning behaviors.
arXiv Detail & Related papers (2022-07-18T13:18:39Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.