Ontology-driven Reinforcement Learning for Personalized Student Support
- URL: http://arxiv.org/abs/2407.10332v2
- Date: Thu, 5 Sep 2024 13:16:07 GMT
- Title: Ontology-driven Reinforcement Learning for Personalized Student Support
- Authors: Ryan Hare, Ying Tang,
- Abstract summary: This paper presents a general-purpose framework for personalized student support, applicable to any virtual educational system.
We apply for their semantic organization, combining them with data collection considerations and multi-agent reinforcement learning.
The result is a modular system that can be adapted to any virtual educational software to provide useful personalized assistance to students.
- Score: 1.8972913066829966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the search for more effective education, there is a widespread effort to develop better approaches to personalize student education. Unassisted, educators often do not have time or resources to personally support every student in a given classroom. Motivated by this issue, and by recent advancements in artificial intelligence, this paper presents a general-purpose framework for personalized student support, applicable to any virtual educational system such as a serious game or an intelligent tutoring system. To fit any educational situation, we apply ontologies for their semantic organization, combining them with data collection considerations and multi-agent reinforcement learning. The result is a modular system that can be adapted to any virtual educational software to provide useful personalized assistance to students.
Related papers
- Artificial Intelligence Ecosystem for Automating Self-Directed Teaching [0.0]
This research introduces an innovative artificial intelligence-driven educational concept designed to optimize self-directed learning.
The system leverages fine-tuned AI models to create an adaptive learning environment that encompasses customized roadmaps, automated presentation generation, and three-dimensional modeling for complex concept visualization.
arXiv Detail & Related papers (2024-11-11T19:00:22Z) - An Innovative Solution: AI-Based Digital Screen-Integrated Tables for Educational Settings [0.0]
Digital screen-integrated tables are designed specifically for educational settings.
Tables feature integrated digital screens controlled by a central processing unit (CPU)
The invention facilitates the collection of student performance data during classroom activities and assessments.
arXiv Detail & Related papers (2024-10-08T08:00:17Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
Large language models (LLMs) offer possibility for resolving this issue by comprehending individual requests.
This paper reviews the recently emerged LLM research related to educational capabilities, including mathematics, writing, programming, reasoning, and knowledge-based question answering.
arXiv Detail & Related papers (2023-12-27T14:37:32Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Enhancing Textbooks with Visuals from the Web for Improved Learning [50.01434477801967]
In this paper, we investigate the effectiveness of vision-language models to automatically enhance textbooks with images from the web.
We collect a dataset of e-textbooks in the math, science, social science and business domains.
We then set up a text-image matching task that involves retrieving and appropriately assigning web images to textbooks.
arXiv Detail & Related papers (2023-04-18T12:16:39Z) - Reinforcement Learning Tutor Better Supported Lower Performers in a Math
Task [32.6507926764587]
Reinforcement learning could be a key tool to reduce the development cost and improve the effectiveness of intelligent tutoring software.
We show that deep reinforcement learning can be used to provide adaptive pedagogical support to students learning about the concept of volume.
arXiv Detail & Related papers (2023-04-11T02:11:24Z) - A Machine Learning system to monitor student progress in educational
institutes [0.0]
We propose a data driven approach that makes use of Machine Learning techniques to generate a classifier called credit score.
The proposal to use credit score as progress indicator is well suited to be used in a Learning Management System.
arXiv Detail & Related papers (2022-11-02T08:24:08Z) - Real-time Attention Span Tracking in Online Education [0.0]
This paper intends to provide a mechanism that uses the camera feed and microphone input to monitor the real-time attention level of students during online classes.
We propose a system that uses five distinct non-verbal features to calculate the attention score of the student during computer based tasks and generate real-time feedback for both students and the organization.
arXiv Detail & Related papers (2021-11-29T17:05:59Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
Personalization and active learning are key aspects to successful learning.
We run a comparative head-to-head study of learning outcomes for two popular online learning platforms.
arXiv Detail & Related papers (2021-04-15T20:40:24Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.