Tight Inversion: Image-Conditioned Inversion for Real Image Editing
- URL: http://arxiv.org/abs/2502.20376v1
- Date: Thu, 27 Feb 2025 18:51:16 GMT
- Title: Tight Inversion: Image-Conditioned Inversion for Real Image Editing
- Authors: Edo Kadosh, Nir Goren, Or Patashnik, Daniel Garibi, Daniel Cohen-Or,
- Abstract summary: We introduce Tight Inversion, an inversion method that utilizes the most possible condition -- the input image itself.<n>This tight condition narrows the distribution of the model's output and enhances both reconstruction and editability.
- Score: 47.445919355293896
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text-to-image diffusion models offer powerful image editing capabilities. To edit real images, many methods rely on the inversion of the image into Gaussian noise. A common approach to invert an image is to gradually add noise to the image, where the noise is determined by reversing the sampling equation. This process has an inherent tradeoff between reconstruction and editability, limiting the editing of challenging images such as highly-detailed ones. Recognizing the reliance of text-to-image models inversion on a text condition, this work explores the importance of the condition choice. We show that a condition that precisely aligns with the input image significantly improves the inversion quality. Based on our findings, we introduce Tight Inversion, an inversion method that utilizes the most possible precise condition -- the input image itself. This tight condition narrows the distribution of the model's output and enhances both reconstruction and editability. We demonstrate the effectiveness of our approach when combined with existing inversion methods through extensive experiments, evaluating the reconstruction accuracy as well as the integration with various editing methods.
Related papers
- Training-Free Text-Guided Image Editing with Visual Autoregressive Model [46.201510044410995]
We propose a novel text-guided image editing framework based on Visual AutoRegressive modeling.
Our method eliminates the need for explicit inversion while ensuring precise and controlled modifications.
Our framework operates in a training-free manner and achieves high-fidelity editing with faster inference speeds.
arXiv Detail & Related papers (2025-03-31T09:46:56Z) - Uniform Attention Maps: Boosting Image Fidelity in Reconstruction and Editing [66.48853049746123]
We analyze reconstruction from a structural perspective and propose a novel approach that replaces traditional cross-attention with uniform attention maps.<n>Our method effectively minimizes distortions caused by varying text conditions during noise prediction.<n> Experimental results demonstrate that our approach not only excels in achieving high-fidelity image reconstruction but also performs robustly in real image composition and editing scenarios.
arXiv Detail & Related papers (2024-11-29T12:11:28Z) - Taming Rectified Flow for Inversion and Editing [57.3742655030493]
Rectified-flow-based diffusion transformers like FLUX and OpenSora have demonstrated outstanding performance in the field of image and video generation.<n>Despite their robust generative capabilities, these models often struggle with inaccuracies.<n>We propose RF-r, a training-free sampler that effectively enhances inversion precision by mitigating the errors in the inversion process of rectified flow.
arXiv Detail & Related papers (2024-11-07T14:29:02Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
arXiv Detail & Related papers (2024-03-14T15:07:36Z) - Effective Real Image Editing with Accelerated Iterative Diffusion
Inversion [6.335245465042035]
It is still challenging to edit and manipulate natural images with modern generative models.
Existing approaches that have tackled the problem of inversion stability often incur in significant trade-offs in computational efficiency.
We propose an Accelerated Iterative Diffusion Inversion method, dubbed AIDI, that significantly improves reconstruction accuracy with minimal additional overhead in space and time complexity.
arXiv Detail & Related papers (2023-09-10T01:23:05Z) - Null-text Inversion for Editing Real Images using Guided Diffusion
Models [44.27570654402436]
We introduce an accurate inversion technique and thus facilitate an intuitive text-based modification of the image.
Our Null-text inversion, based on the publicly available Stable Diffusion model, is extensively evaluated on a variety of images and prompt editing.
arXiv Detail & Related papers (2022-11-17T18:58:14Z) - High-Fidelity GAN Inversion for Image Attribute Editing [61.966946442222735]
We present a novel high-fidelity generative adversarial network (GAN) inversion framework that enables attribute editing with image-specific details well-preserved.
With a low bit-rate latent code, previous works have difficulties in preserving high-fidelity details in reconstructed and edited images.
We propose a distortion consultation approach that employs a distortion map as a reference for high-fidelity reconstruction.
arXiv Detail & Related papers (2021-09-14T11:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.