論文の概要: Walking the Web of Concept-Class Relationships in Incrementally Trained Interpretable Models
- arxiv url: http://arxiv.org/abs/2502.20393v1
- Date: Thu, 27 Feb 2025 18:59:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:30.237575
- Title: Walking the Web of Concept-Class Relationships in Incrementally Trained Interpretable Models
- Title(参考訳): インクリメンタル学習型解釈モデルにおける概念クラス関係のWeb
- Authors: Susmit Agrawal, Deepika Vemuri, Sri Siddarth Chakaravarthy P, Vineeth N. Balasubramanian,
- Abstract要約: 概念とクラスは複雑な関係の網を形成しており、それは劣化しやすく、経験を通じて保存および拡張する必要がある。
本研究では,マルチモーダルな概念を用いて,学習可能なパラメータの数を増やすことなく分類を行う新しい手法である MuCIL を提案する。
- 参考スコア(独自算出の注目度): 25.84386438333865
- License:
- Abstract: Concept-based methods have emerged as a promising direction to develop interpretable neural networks in standard supervised settings. However, most works that study them in incremental settings assume either a static concept set across all experiences or assume that each experience relies on a distinct set of concepts. In this work, we study concept-based models in a more realistic, dynamic setting where new classes may rely on older concepts in addition to introducing new concepts themselves. We show that concepts and classes form a complex web of relationships, which is susceptible to degradation and needs to be preserved and augmented across experiences. We introduce new metrics to show that existing concept-based models cannot preserve these relationships even when trained using methods to prevent catastrophic forgetting, since they cannot handle forgetting at concept, class, and concept-class relationship levels simultaneously. To address these issues, we propose a novel method - MuCIL - that uses multimodal concepts to perform classification without increasing the number of trainable parameters across experiences. The multimodal concepts are aligned to concepts provided in natural language, making them interpretable by design. Through extensive experimentation, we show that our approach obtains state-of-the-art classification performance compared to other concept-based models, achieving over 2$\times$ the classification performance in some cases. We also study the ability of our model to perform interventions on concepts, and show that it can localize visual concepts in input images, providing post-hoc interpretations.
- Abstract(参考訳): コンセプトベースの手法は、標準的な教師付き設定で解釈可能なニューラルネットワークを開発するための有望な方向として登場した。
しかし、インクリメンタルな設定でそれらを研究するほとんどの研究は、すべての経験にまたがる静的な概念を仮定するか、それぞれの経験が異なる概念セットに依存していると仮定する。
本研究では,新しい概念の導入に加えて,新しいクラスが古い概念に依存しているような,より現実的でダイナミックな環境で概念ベースのモデルを研究する。
概念とクラスは複雑な関係の網を形成しており、それは劣化しやすく、経験を通じて保存および拡張する必要がある。
我々は,既存の概念ベースモデルでは,概念,クラス,概念クラスの関係レベルを同時に忘れることに対処できないため,破滅的な忘れ込みを防ぐ方法を用いて訓練しても,これらの関係を維持できないことを示す新しい指標を紹介した。
これらの問題に対処するために,マルチモーダルな概念を用いて,経験をまたいだトレーニング可能なパラメータの数を増やすことなく分類を行う新しい手法である MuCIL を提案する。
マルチモーダルの概念は自然言語で提供される概念と一致しており、設計によって解釈可能である。
広範にわたる実験により,本手法は他の概念ベースモデルと比較して最先端の分類性能が得られ,場合によっては2$\times以上の分類性能が得られることを示した。
また, モデルが概念の介入を行う能力について検討し, 視覚的概念を入力画像にローカライズし, ポストホックな解釈を提供することを示す。
関連論文リスト
- OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
創造的な視覚概念の生成は、しばしば関連する結果を生み出すために参照イメージ内の特定の概念からインスピレーションを引き出す。
我々は,創造的画像生成のための視覚的概念分離手法であるOmniPrismを提案する。
提案手法は,自然言語で案内される不整合概念表現を学習し,これらの概念を組み込むために拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-12-16T18:59:52Z) - Scaling Concept With Text-Guided Diffusion Models [53.80799139331966]
概念を置き換える代わりに、概念自体を強化するか、あるいは抑圧できるだろうか?
ScalingConceptは、分解された概念を、新しい要素を導入することなく、実際の入力でスケールアップまたはスケールダウンする、シンプルで効果的な方法である。
さらに重要なのは、ScalingConceptは画像とオーディオドメインにまたがる様々な新しいゼロショットアプリケーションを可能にすることだ。
論文 参考訳(メタデータ) (2024-10-31T17:09:55Z) - How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
本稿では,CIDM(Concept-Incremental Text-to-image Diffusion Model)を提案する。
破滅的な忘れと概念の無視を解決し、新しいカスタマイズタスクを概念的な方法で学習する。
実験により、CIDMが既存のカスタム拡散モデルを上回ることが確認された。
論文 参考訳(メタデータ) (2024-10-23T06:47:29Z) - ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction [20.43411883845885]
本研究では,非教師付き概念抽出(UCE)という,概念の人間的知識のない非教師付き概念抽出手法を提案する。
複数の概念を含むイメージを与えられたタスクは、事前訓練された拡散モデルから既存の知識のみに依存する個々の概念を抽出し、再現することを目的としている。
本稿では,事前学習した拡散モデル固有の能力を2つの側面に解き放つことで,UCEに対処するConceptExpressを提案する。
論文 参考訳(メタデータ) (2024-07-09T17:50:28Z) - Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
本稿では,事前学習された生成モデルの潜在空間に概念特徴をマッピングすることに依存する新しい手法を提案する。
本手法の有効性を,解釈可能な予測ネットワークの精度,再現性,学習概念の忠実性,一貫性の観点から定量的に検証した。
論文 参考訳(メタデータ) (2024-07-01T14:39:41Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
現在,SOTA の概念学習アプローチは,概念の忠実さの欠如と,概念の相互運用の限界という2つの大きな問題に悩まされている。
ドメイン間の概念学習のための新しい自己説明型アーキテクチャを提案する。
提案手法は,現在広く使われている4つの実世界のデータセットに対するSOTA概念学習手法に対して有効であることを示す。
論文 参考訳(メタデータ) (2024-05-01T06:50:18Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - Concept Distillation: Leveraging Human-Centered Explanations for Model
Improvement [3.026365073195727]
概念活性化ベクトル(Concept Activation Vectors, CAV)は、ある概念に対するモデルの感度と潜在的なバイアスを推定する。
微調整によりモデルバイアスを低減するため,CAVをポストホック解析からアンテホックトレーニングに拡張する。
本稿では,いくつかの分類問題に対する概念感受性トレーニングの応用について述べる。
論文 参考訳(メタデータ) (2023-11-26T14:00:14Z) - Separating Skills and Concepts for Novel Visual Question Answering [66.46070380927372]
アウト・オブ・ディストリビューションデータへの一般化は、VQA(Visual Question Answering)モデルにおいて問題となっている。
「スキル」とは、数え方や属性認識などの視覚的なタスクであり、その疑問に言及された「概念」に適用される。
モデル内でこれらの2つの要因を暗黙的に分離するスキルと概念を学習するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-07-19T18:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。