Unifying Model Predictive Path Integral Control, Reinforcement Learning, and Diffusion Models for Optimal Control and Planning
- URL: http://arxiv.org/abs/2502.20476v2
- Date: Tue, 04 Mar 2025 13:11:38 GMT
- Title: Unifying Model Predictive Path Integral Control, Reinforcement Learning, and Diffusion Models for Optimal Control and Planning
- Authors: Yankai Li, Mo Chen,
- Abstract summary: We establish a unified perspective that connects MPPI, RL, and Diffusion Models through gradient-based optimization on the Gibbs measure.<n>We first show that MPPI can be interpreted as performing gradient ascent on a smoothed energy function.<n>We then demonstrate that Policy Gradient methods reduce to MPPI by applying an exponential transformation to the objective function.
- Score: 6.871390204787483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model Predictive Path Integral (MPPI) control, Reinforcement Learning (RL), and Diffusion Models have each demonstrated strong performance in trajectory optimization, decision-making, and motion planning. However, these approaches have traditionally been treated as distinct methodologies with separate optimization frameworks. In this work, we establish a unified perspective that connects MPPI, RL, and Diffusion Models through gradient-based optimization on the Gibbs measure. We first show that MPPI can be interpreted as performing gradient ascent on a smoothed energy function. We then demonstrate that Policy Gradient methods reduce to MPPI by applying an exponential transformation to the objective function. Additionally, we establish that the reverse sampling process in diffusion models follows the same update rule as MPPI.
Related papers
- Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.
Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.
Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - Predictive Lagrangian Optimization for Constrained Reinforcement Learning [15.082498910832529]
Constrained optimization is popularly seen in reinforcement learning for addressing complex control tasks.<n>In this paper, we propose a more generic equivalence framework to build the connection between constrained optimization and feedback control system.
arXiv Detail & Related papers (2025-01-25T13:39:45Z) - Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Model-based Reinforcement Learning for Parameterized Action Spaces [11.94388805327713]
We propose a novel model-based reinforcement learning algorithm for PAMDPs.
The agent learns a parameterized-action-conditioned dynamics model and plans with a modified Model Predictive Path Integral control.
Our empirical results on several standard benchmarks show that our algorithm achieves superior sample efficiency and performance than state-of-the-art PAMDP methods.
arXiv Detail & Related papers (2024-04-03T19:48:13Z) - DPPA: Pruning Method for Large Language Model to Model Merging [39.13317231533299]
We introduce a dual-stage method termed Dynamic Pruning Partition Amplification (DPPA) to tackle the challenge of merging complex fine-tuned models.
We show that our method maintains a mere 20% of domain-specific parameters and yet delivers a performance comparable to other methodologies.
Our method displays outstanding performance post-pruning, leading to a significant improvement of nearly 20% performance in model merging.
arXiv Detail & Related papers (2024-03-05T09:12:49Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
arXiv Detail & Related papers (2023-02-08T07:37:51Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.