NANOGPT: A Query-Driven Large Language Model Retrieval-Augmented Generation System for Nanotechnology Research
- URL: http://arxiv.org/abs/2502.20541v1
- Date: Thu, 27 Feb 2025 21:40:22 GMT
- Title: NANOGPT: A Query-Driven Large Language Model Retrieval-Augmented Generation System for Nanotechnology Research
- Authors: Achuth Chandrasekhar, Omid Barati Farimani, Olabode T. Ajenifujah, Janghoon Ock, Amir Barati Farimani,
- Abstract summary: Large Language Model Retrieval-Augmented Generation (LLM-RAG) system tailored for nanotechnology research.<n>System retrieves relevant literature by utilizing Google Scholar's advanced search, and scraping open-access papers from Elsevier, Springer Nature, and ACS Publications.
- Score: 7.520798704421448
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper presents the development and application of a Large Language Model Retrieval-Augmented Generation (LLM-RAG) system tailored for nanotechnology research. The system leverages the capabilities of a sophisticated language model to serve as an intelligent research assistant, enhancing the efficiency and comprehensiveness of literature reviews in the nanotechnology domain. Central to this LLM-RAG system is its advanced query backend retrieval mechanism, which integrates data from multiple reputable sources. The system retrieves relevant literature by utilizing Google Scholar's advanced search, and scraping open-access papers from Elsevier, Springer Nature, and ACS Publications. This multifaceted approach ensures a broad and diverse collection of up-to-date scholarly articles and papers. The proposed system demonstrates significant potential in aiding researchers by providing a streamlined, accurate, and exhaustive literature retrieval process, thereby accelerating research advancements in nanotechnology. The effectiveness of the LLM-RAG system is validated through rigorous testing, illustrating its capability to significantly reduce the time and effort required for comprehensive literature reviews, while maintaining high accuracy, query relevance and outperforming standard, publicly available LLMS.
Related papers
- A Vision for Auto Research with LLM Agents [47.310516109726656]
This paper introduces Agent-Based Auto Research, a structured multi-agent framework designed to automate, coordinate, and optimize the full lifecycle of scientific research.
The system spans all major research phases, including literature review, ideation, methodology, experimentation, paper writing, peer review response, and dissemination.
arXiv Detail & Related papers (2025-04-26T02:06:10Z) - IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery [27.218896203253987]
IRIS is an open-source platform designed for researchers to leverage large language models (LLMs)-assisted scientific ideation.
IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis.
We conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation.
arXiv Detail & Related papers (2025-04-23T14:01:36Z) - A Proposed Large Language Model-Based Smart Search for Archive System [0.0]
This study presents a novel framework for smart search in digital archival systems.<n>By employing a Retrieval-Augmented Generation (RAG) approach, the framework enables the processing of natural language queries.<n>We present the architecture and implementation of the system and evaluate its performance in four experiments.
arXiv Detail & Related papers (2025-01-13T02:53:07Z) - A Retrieval-Augmented Generation Framework for Academic Literature Navigation in Data Science [2.5398014196797614]
This paper presents an enhanced Retrieval-Augmented Generation application, an artificial intelligence (AI)-based system designed to assist data scientists in accessing precise and contextually relevant academic resources.<n>The AI-powered application integrates advanced techniques, including the GeneRation Of BIbliographic Data (GROBID) technique for extracting information.<n>A comprehensive evaluation using the Retrieval-Augmented Generation Assessment System (RAGAS) framework demonstrates substantial improvements in key metrics.
arXiv Detail & Related papers (2024-12-19T21:14:54Z) - Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
Large Language Models (LLMs), powered by advanced generative AI, have emerged as transformative tools.<n>This study systematically maps the literature on the use of LLMs for qualitative research.<n>Findings reveal that LLMs are utilized across diverse fields, demonstrating the potential to automate processes.
arXiv Detail & Related papers (2024-11-18T21:28:00Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs.
Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency.
Future research directions are proposed, focusing on improving the robustness of RAG models.
arXiv Detail & Related papers (2024-10-03T22:29:47Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - Automating Research Synthesis with Domain-Specific Large Language Model Fine-Tuning [0.9110413356918055]
This research pioneers the use of fine-tuned Large Language Models (LLMs) to automate Systematic Literature Reviews ( SLRs)
Our study employed the latest fine-tuning methodologies together with open-sourced LLMs, and demonstrated a practical and efficient approach to automating the final execution stages of an SLR process.
The results maintained high fidelity in factual accuracy in LLM responses, and were validated through the replication of an existing PRISMA-conforming SLR.
arXiv Detail & Related papers (2024-04-08T00:08:29Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.