ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models
- URL: http://arxiv.org/abs/2404.07738v2
- Date: Sun, 09 Feb 2025 08:15:44 GMT
- Title: ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models
- Authors: Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, Sung Ju Hwang,
- Abstract summary: ResearchAgent is an AI-based system for ideation and operationalization of novel work.<n>ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.<n>We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
- Score: 56.08917291606421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pace of scientific research, vital for improving human life, is complex, slow, and needs specialized expertise. Meanwhile, novel, impactful research often stems from both a deep understanding of prior work, and a cross-pollination of ideas across domains and fields. To enhance the productivity of researchers, we propose ResearchAgent, which leverages the encyclopedic knowledge and linguistic reasoning capabilities of Large Language Models (LLMs) to assist them in their work. This system automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them based on the feedback from collaborative LLM-powered reviewing agents. Specifically, starting with a core scientific paper, ResearchAgent is augmented not only with relevant publications by connecting information over an academic graph but also entities retrieved from a knowledge store derived from shared underlying concepts mined across numerous papers. Then, mimicking a scientific approach to improving ideas with peer discussions, we leverage multiple LLM-based ReviewingAgents that provide reviews and feedback via iterative revision processes. These reviewing agents are instantiated with human preference-aligned LLMs whose criteria for evaluation are elicited from actual human judgments via LLM prompting. We experimentally validate our ResearchAgent on scientific publications across multiple disciplines, showing its effectiveness in generating novel, clear, and valid ideas based on both human and model-based evaluation results. Our initial foray into AI-mediated scientific research has important implications for the development of future systems aimed at supporting researchers in their ideation and operationalization of novel work.
Related papers
- IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery [27.218896203253987]
IRIS is an open-source platform designed for researchers to leverage large language models (LLMs)-assisted scientific ideation.
IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis.
We conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation.
arXiv Detail & Related papers (2025-04-23T14:01:36Z) - Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents [11.74019905854637]
Large language models (LLMs) are evolving into scientific agents that automate critical tasks.
Unlike general-purpose LLMs, specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms.
We highlight why they differ from general agents and the ways in which they advance research across various scientific fields.
arXiv Detail & Related papers (2025-03-31T13:11:28Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition [67.26124739345332]
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined.
We introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery.
We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers.
arXiv Detail & Related papers (2025-03-27T08:09:15Z) - IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
Large Language Models (LLMs) have transformed how people interact with artificial intelligence (AI) systems.
We propose IdeaBench, a benchmark system that includes a comprehensive dataset and an evaluation framework.
Our dataset comprises titles and abstracts from a diverse range of influential papers, along with their referenced works.
Our evaluation framework is a two-stage process: first, using GPT-4o to rank ideas based on user-specified quality indicators such as novelty and feasibility, enabling scalable personalization.
arXiv Detail & Related papers (2024-10-31T17:04:59Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
An exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions.
Recent developments in large language models(LLMs) suggest a promising avenue for automating the generation of novel research ideas.
We propose a Chain-of-Ideas(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain.
arXiv Detail & Related papers (2024-10-17T03:26:37Z) - Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation [48.29699224989952]
VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.
We show that this multi-agent approach outperforms the state-of-the-art method in producing novel and impactful scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
We focus on idea assessment, which aims to leverage the knowledge of large language models to assess the merit of scientific ideas.
We release a benchmark dataset from nearly four thousand manuscript papers with full texts, meticulously designed to train and evaluate the performance of different approaches to this task.
Our findings suggest that the representations of large language models hold more potential in quantifying the value of ideas than their generative outputs.
arXiv Detail & Related papers (2024-09-07T02:07:22Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
Large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery.
No evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas.
arXiv Detail & Related papers (2024-09-06T08:25:03Z) - Interesting Scientific Idea Generation Using Knowledge Graphs and LLMs: Evaluations with 100 Research Group Leaders [0.6906005491572401]
We introduce SciMuse, which uses 58 million research papers and a large-language model to generate research ideas.
We conduct a large-scale evaluation in which over 100 research group leaders ranked more than 4,400 personalized ideas based on their interest.
This data allows us to predict research interest using (1) supervised neural networks trained on human evaluations, and (2) unsupervised zero-shot ranking with large-language models.
arXiv Detail & Related papers (2024-05-27T11:00:51Z) - Acceleron: A Tool to Accelerate Research Ideation [15.578814192003437]
Acceleron is a research accelerator for different phases of the research life cycle.
It guides researchers through the formulation of a comprehensive research proposal, encompassing a novel research problem.
We leverage the reasoning and domain-specific skills of Large Language Models (LLMs) to create an agent-based architecture.
arXiv Detail & Related papers (2024-03-07T10:20:06Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.