WorldModelBench: Judging Video Generation Models As World Models
- URL: http://arxiv.org/abs/2502.20694v1
- Date: Fri, 28 Feb 2025 03:58:23 GMT
- Title: WorldModelBench: Judging Video Generation Models As World Models
- Authors: Dacheng Li, Yunhao Fang, Yukang Chen, Shuo Yang, Shiyi Cao, Justin Wong, Michael Luo, Xiaolong Wang, Hongxu Yin, Joseph E. Gonzalez, Ion Stoica, Song Han, Yao Lu,
- Abstract summary: Video generation models have rapidly progressed, positioning themselves as video world models capable of supporting decision-making applications like robotics and autonomous driving.<n>Current benchmarks fail to rigorously evaluate these claims, focusing only on general video quality.<n>We propose WorldModelBench, a benchmark designed to evaluate the world modeling capabilities of video generation models in application-driven domains.
- Score: 57.776769550453594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video generation models have rapidly progressed, positioning themselves as video world models capable of supporting decision-making applications like robotics and autonomous driving. However, current benchmarks fail to rigorously evaluate these claims, focusing only on general video quality, ignoring important factors to world models such as physics adherence. To bridge this gap, we propose WorldModelBench, a benchmark designed to evaluate the world modeling capabilities of video generation models in application-driven domains. WorldModelBench offers two key advantages: (1) Against to nuanced world modeling violations: By incorporating instruction-following and physics-adherence dimensions, WorldModelBench detects subtle violations, such as irregular changes in object size that breach the mass conservation law - issues overlooked by prior benchmarks. (2) Aligned with large-scale human preferences: We crowd-source 67K human labels to accurately measure 14 frontier models. Using our high-quality human labels, we further fine-tune an accurate judger to automate the evaluation procedure, achieving 8.6% higher average accuracy in predicting world modeling violations than GPT-4o with 2B parameters. In addition, we demonstrate that training to align human annotations by maximizing the rewards from the judger noticeably improve the world modeling capability. The website is available at https://worldmodelbench-team.github.io.
Related papers
- AI in a vat: Fundamental limits of efficient world modelling for agent sandboxing and interpretability [84.52205243353761]
Recent work proposes using world models to generate controlled virtual environments in which AI agents can be tested before deployment.
We investigate ways of simplifying world models that remain agnostic to the AI agent under evaluation.
arXiv Detail & Related papers (2025-04-06T20:35:44Z) - VBench-2.0: Advancing Video Generation Benchmark Suite for Intrinsic Faithfulness [76.16523963623537]
We introduce VBench-2.0, a benchmark designed to evaluate video generative models for intrinsic faithfulness.
VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense.
By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models.
arXiv Detail & Related papers (2025-03-27T17:57:01Z) - WorldSimBench: Towards Video Generation Models as World Simulators [79.69709361730865]
We classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench.
WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks.
Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.
arXiv Detail & Related papers (2024-10-23T17:56:11Z) - EVA: An Embodied World Model for Future Video Anticipation [42.937348053592636]
We decompose the complex video prediction into four meta-tasks that enable the world model to handle this issue in a more fine-grained manner.
We introduce a new benchmark named Embodied Video Anticipation Benchmark (EVA-Bench) to provide a well-rounded evaluation.
We propose the Embodied Video Anticipator (EVA), a unified framework aiming at video understanding and generation.
arXiv Detail & Related papers (2024-10-20T18:24:00Z) - DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics.
Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge.
arXiv Detail & Related papers (2024-10-14T17:19:23Z) - AVID: Adapting Video Diffusion Models to World Models [10.757223474031248]
We propose to adapt pretrained video diffusion models to action-conditioned world models, without access to the parameters of the pretrained model.
AVID uses a learned mask to modify the intermediate outputs of the pretrained model and generate accurate action-conditioned videos.
We evaluate AVID on video game and real-world robotics data, and show that it outperforms existing baselines for diffusion model adaptation.
arXiv Detail & Related papers (2024-10-01T13:48:31Z) - Zero-shot Safety Prediction for Autonomous Robots with Foundation World Models [0.12499537119440243]
A world model creates a surrogate world to train a controller and predict safety violations by learning the internal dynamic model of systems.
We propose foundation world models that embed observations into meaningful and causally latent representations.
This enables the surrogate dynamics to directly predict causal future states by leveraging a training-free large language model.
arXiv Detail & Related papers (2024-03-30T20:03:49Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
We propose MMBench, a benchmark for assessing the multi-modal capabilities of vision-language models.
MMBench is meticulously curated with well-designed quality control schemes.
MMBench incorporates multiple-choice questions in both English and Chinese versions.
arXiv Detail & Related papers (2023-07-12T16:23:09Z) - Transformers are Sample Efficient World Models [1.9444242128493845]
We introduce IRIS, a data-efficient agent that learns in a world model composed of a discrete autoencoder and an autoregressive Transformer.
With the equivalent of only two hours of gameplay in the Atari 100k benchmark, IRIS achieves a mean human normalized score of 1.046, and outperforms humans on 10 out of 26 games.
arXiv Detail & Related papers (2022-09-01T17:03:07Z) - Defensive Patches for Robust Recognition in the Physical World [111.46724655123813]
Data-end defense improves robustness by operations on input data instead of modifying models.
Previous data-end defenses show low generalization against diverse noises and weak transferability across multiple models.
We propose a defensive patch generation framework to address these problems by helping models better exploit these features.
arXiv Detail & Related papers (2022-04-13T07:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.