Generating Clinically Realistic EHR Data via a Hierarchy- and Semantics-Guided Transformer
- URL: http://arxiv.org/abs/2502.20719v1
- Date: Fri, 28 Feb 2025 05:06:04 GMT
- Title: Generating Clinically Realistic EHR Data via a Hierarchy- and Semantics-Guided Transformer
- Authors: Guanglin Zhou, Sebastiano Barbieri,
- Abstract summary: We propose the Hierarchy- and Semantics-Guided Transformer (HiSGT), a novel framework for the generative process.<n>HiSGT constructs a hierarchical graph to encode parent-child and sibling relationships among clinical codes and employs a graph neural network to derive hierarchy-aware embeddings.<n>Experiments on the MIMIC-III and MIMIC-IV datasets demonstrate that HiSGT significantly improves the statistical alignment of synthetic data with real patient records.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generating realistic synthetic electronic health records (EHRs) holds tremendous promise for accelerating healthcare research, facilitating AI model development and enhancing patient privacy. However, existing generative methods typically treat EHRs as flat sequences of discrete medical codes. This approach overlooks two critical aspects: the inherent hierarchical organization of clinical coding systems and the rich semantic context provided by code descriptions. Consequently, synthetic patient sequences often lack high clinical fidelity and have limited utility in downstream clinical tasks. In this paper, we propose the Hierarchy- and Semantics-Guided Transformer (HiSGT), a novel framework that leverages both hierarchical and semantic information for the generative process. HiSGT constructs a hierarchical graph to encode parent-child and sibling relationships among clinical codes and employs a graph neural network to derive hierarchy-aware embeddings. These are then fused with semantic embeddings extracted from a pre-trained clinical language model (e.g., ClinicalBERT), enabling the Transformer-based generator to more accurately model the nuanced clinical patterns inherent in real EHRs. Extensive experiments on the MIMIC-III and MIMIC-IV datasets demonstrate that HiSGT significantly improves the statistical alignment of synthetic data with real patient records, as well as supports robust downstream applications such as chronic disease classification. By addressing the limitations of conventional raw code-based generative models, HiSGT represents a significant step toward clinically high-fidelity synthetic data generation and a general paradigm suitable for interpretable medical code representation, offering valuable applications in data augmentation and privacy-preserving healthcare analytics.
Related papers
- An Integrated Approach to AI-Generated Content in e-health [0.0]
We propose an end-to-end class-conditioned framework to generate synthetic medical images and text data.
Our framework integrates Diffusion and Large Language Models (LLMs) to generate data that closely match real-world patterns.
arXiv Detail & Related papers (2025-01-18T14:35:29Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
Synthetic Data Generation based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered.
This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images.
The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Retrieval-Reasoning Large Language Model-based Synthetic Clinical Trial Generation [8.567656208979475]
We introduce a novel Retrieval-Reasoning framework that leverages large language models to generate synthetic clinical trials.
Experiments conducted on real clinical trials from the urlClinicalTrials.gov database demonstrate that our synthetic data can effectively augment real datasets.
Our findings suggest that LLMs for synthetic clinical trial generation hold promise for accelerating clinical research and upholding ethical standards for patient privacy.
arXiv Detail & Related papers (2024-10-16T11:46:32Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - TRIALSCOPE: A Unifying Causal Framework for Scaling Real-World Evidence
Generation with Biomedical Language Models [22.046231408373522]
We present TRIALSCOPE, a unifying framework for distilling real-world evidence from observational data.
We show that TRIALSCOPE can produce high-quality structuring of real-world data and generates comparable results to marquee cancer trials.
arXiv Detail & Related papers (2023-11-02T15:15:47Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
generative adversarial network (GAN) entitled EHR-M-GAN which synthesizes textitmixed-type timeseries EHR data.
We have validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients.
arXiv Detail & Related papers (2021-12-22T17:17:34Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.