NeuroMorse: A Temporally Structured Dataset For Neuromorphic Computing
- URL: http://arxiv.org/abs/2502.20729v1
- Date: Fri, 28 Feb 2025 05:22:45 GMT
- Title: NeuroMorse: A Temporally Structured Dataset For Neuromorphic Computing
- Authors: Ben Walters, Yeshwanth Bethi, Taylor Kergan, Binh Nguyen, Amirali Amirsoleimani, Jason K. Eshraghian, Saeed Afshar, Mostafa Rahimi Azghadi,
- Abstract summary: Neuromorphic engineering aims to advance computing by mimicking the brain's efficient processing, where data is encoded as asynchronous temporal events.<n>Many benchmarks for neuromorphic algorithms primarily focus on spatial features, the temporal dynamics that are inherent to most sequence-based tasks.<n>We present NeuroMorse, a temporally structured dataset designed for benchmarking neuromorphic learning systems.
- Score: 3.1203684071013122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic engineering aims to advance computing by mimicking the brain's efficient processing, where data is encoded as asynchronous temporal events. This eliminates the need for a synchronisation clock and minimises power consumption when no data is present. However, many benchmarks for neuromorphic algorithms primarily focus on spatial features, neglecting the temporal dynamics that are inherent to most sequence-based tasks. This gap may lead to evaluations that fail to fully capture the unique strengths and characteristics of neuromorphic systems. In this paper, we present NeuroMorse, a temporally structured dataset designed for benchmarking neuromorphic learning systems. NeuroMorse converts the top 50 words in the English language into temporal Morse code spike sequences. Despite using only two input spike channels for Morse dots and dashes, complex information is encoded through temporal patterns in the data. The proposed benchmark contains feature hierarchy at multiple temporal scales that test the capacity of neuromorphic algorithms to decompose input patterns into spatial and temporal hierarchies. We demonstrate that our training set is challenging to categorise using a linear classifier and that identifying keywords in the test set is difficult using conventional methods. The NeuroMorse dataset is available at Zenodo, with our accompanying code on GitHub at https://github.com/Ben-E-Walters/NeuroMorse.
Related papers
- Deep Learning for real-time neural decoding of grasp [0.0]
We present a Deep Learning-based approach to the decoding of neural signals for grasp type classification.
The main goal of the presented approach is to improve over state-of-the-art decoding accuracy without relying on any prior neuroscience knowledge.
arXiv Detail & Related papers (2023-11-02T08:26:29Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - A Comparison of Temporal Encoders for Neuromorphic Keyword Spotting with
Few Neurons [0.11726720776908518]
Two candidate neurocomputational elements for temporal encoding and feature extraction in SNNs are investigated.
Resource-efficient keyword spotting applications may benefit from the use of these encoders, but further work on methods for learning the time constants and weights is required.
arXiv Detail & Related papers (2023-01-24T12:50:54Z) - Axonal Delay As a Short-Term Memory for Feed Forward Deep Spiking Neural
Networks [3.985532502580783]
Recent studies have found that the time delay of neurons plays an important role in the learning process.
configuring the precise timing of the spike is a promising direction for understanding and improving the transmission process of temporal information in SNNs.
In this paper, we verify the effectiveness of integrating time delay into supervised learning and propose a module that modulates the axonal delay through short-term memory.
arXiv Detail & Related papers (2022-04-20T16:56:42Z) - N-Omniglot: a Large-scale Neuromorphic Dataset for Spatio-Temporal
Sparse Few-shot Learning [10.812738608234321]
We provide the first neuromorphic dataset: N- Omniglot, using the Dynamic Vision Sensor (DVS)
It contains 1623 categories of handwritten characters, with only 20 samples per class.
The dataset provides a powerful challenge and a suitable benchmark for developing SNNs algorithm in the few-shot learning domain.
arXiv Detail & Related papers (2021-12-25T12:41:34Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Astrocytes mediate analogous memory in a multi-layer neuron-astrocytic
network [52.77024349608834]
We show how a piece of information can be maintained as a robust activity pattern for several seconds then completely disappear if no other stimuli come.
This kind of short-term memory can keep operative information for seconds, then completely forget it to avoid overlapping with forthcoming patterns.
We show how arbitrary patterns can be loaded, then stored for a certain interval of time, and retrieved if the appropriate clue pattern is applied to the input.
arXiv Detail & Related papers (2021-08-31T16:13:15Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
We derive an efficient training algorithm for Leaky Integrate and Fire neurons, which is capable of training a SNN to learn complex spatial temporal patterns.
We have developed a CMOS circuit implementation for a memristor-based network of neuron and synapses which retains critical neural dynamics with reduced complexity.
arXiv Detail & Related papers (2021-04-21T18:23:31Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.