Plan2Align: Predictive Planning Based Test-Time Preference Alignment in Paragraph-Level Machine Translation
- URL: http://arxiv.org/abs/2502.20795v1
- Date: Fri, 28 Feb 2025 07:24:33 GMT
- Title: Plan2Align: Predictive Planning Based Test-Time Preference Alignment in Paragraph-Level Machine Translation
- Authors: Kuang-Da Wang, Teng-Ruei Chen, Yu Heng Hung, Shuoyang Ding, Yueh-Hua Wu, Yu-Chiang Frank Wang, Chao-Han Huck Yang, Wen-Chih Peng, Ping-Chun Hsieh,
- Abstract summary: We introduce Plan2Align, a test-time alignment framework that treats translation as a predictive planning problem.<n>Plan2Align significantly improves paragraph-level translation, achieving performance surpassing or on par with the existing training-time and test-time alignment methods.
- Score: 42.89806150031301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Translation (MT) has been predominantly designed for sentence-level translation using transformer-based architectures. While next-token prediction based Large Language Models (LLMs) demonstrate strong capabilities in long-text translation, non-extensive language models often suffer from omissions and semantic inconsistencies when processing paragraphs. Existing preference alignment methods improve sentence-level translation but fail to ensure coherence over extended contexts due to the myopic nature of next-token generation. We introduce Plan2Align, a test-time alignment framework that treats translation as a predictive planning problem, adapting Model Predictive Control to iteratively refine translation outputs. Experiments on WMT24 Discourse-Level Literary Translation show that Plan2Align significantly improves paragraph-level translation, achieving performance surpassing or on par with the existing training-time and test-time alignment methods on LLaMA-3.1 8B.
Related papers
- Multilingual Contextualization of Large Language Models for Document-Level Machine Translation [30.005159724115824]
Large language models (LLMs) have demonstrated strong performance in sentence-level machine translation.
We propose a method to improve LLM-based long-document translation through targeted fine-tuning on high-quality document-level data.
Our approach supports multiple translation paradigms, including direct document-to-document and chunk-level translation.
arXiv Detail & Related papers (2025-04-16T14:52:22Z) - Towards Chapter-to-Chapter Context-Aware Literary Translation via Large Language Models [16.96647110733261]
discourse phenomena in existing document-level translation datasets are sparse.
Most existing document-level corpora and context-aware machine translation methods rely on an unrealistic assumption on sentence-level alignments.
We propose a more pragmatic and challenging setting for context-aware translation, termed chapter-to-chapter (Ch2Ch) translation.
arXiv Detail & Related papers (2024-07-12T04:18:22Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
Large Language Models (LLM's) have demonstrated considerable success in various Natural Language Processing tasks.
We show that they have yet to attain state-of-the-art performance in Neural Machine Translation.
We propose adapting LLM's as Automatic Post-Editors (APE) rather than direct translators.
arXiv Detail & Related papers (2023-10-23T12:22:15Z) - Dual-Alignment Pre-training for Cross-lingual Sentence Embedding [79.98111074307657]
We propose a dual-alignment pre-training (DAP) framework for cross-lingual sentence embedding.
We introduce a novel representation translation learning (RTL) task, where the model learns to use one-side contextualized token representation to reconstruct its translation counterpart.
Our approach can significantly improve sentence embedding.
arXiv Detail & Related papers (2023-05-16T03:53:30Z) - Modeling Context With Linear Attention for Scalable Document-Level
Translation [72.41955536834702]
We investigate the efficacy of a recent linear attention model on document translation and augment it with a sentential gate to promote a recency inductive bias.
We show that sentential gating further improves translation quality on IWSLT.
arXiv Detail & Related papers (2022-10-16T03:41:50Z) - End-to-End Training for Back-Translation with Categorical Reparameterization Trick [0.0]
Back-translation is an effective semi-supervised learning framework in neural machine translation (NMT)
A pre-trained NMT model translates monolingual sentences and makes synthetic bilingual sentence pairs for the training of the other NMT model.
The discrete property of translated sentences prevents information gradient from flowing between the two NMT models.
arXiv Detail & Related papers (2022-02-17T06:31:03Z) - Meta Back-translation [111.87397401837286]
We propose a novel method to generate pseudo-parallel data from a pre-trained back-translation model.
Our method is a meta-learning algorithm which adapts a pre-trained back-translation model so that the pseudo-parallel data it generates would train a forward-translation model to do well on a validation set.
arXiv Detail & Related papers (2021-02-15T20:58:32Z) - Unsupervised Cross-lingual Adaptation for Sequence Tagging and Beyond [58.80417796087894]
Cross-lingual adaptation with multilingual pre-trained language models (mPTLMs) mainly consists of two lines of works: zero-shot approach and translation-based approach.
We propose a novel framework to consolidate the zero-shot approach and the translation-based approach for better adaptation performance.
arXiv Detail & Related papers (2020-10-23T13:47:01Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
Document-level machine translation incorporates inter-sentential dependencies into the translation of a source sentence.
We propose a new framework to model cross-sentence dependencies by training neural machine translation (NMT) to predict both the target translation and surrounding sentences of a source sentence.
arXiv Detail & Related papers (2020-03-30T03:38:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.