Tuning-Free Structured Sparse PCA via Deep Unfolding Networks
- URL: http://arxiv.org/abs/2502.20837v2
- Date: Fri, 04 Apr 2025 07:47:35 GMT
- Title: Tuning-Free Structured Sparse PCA via Deep Unfolding Networks
- Authors: Long Chen, Xianchao Xiu,
- Abstract summary: We propose a new type of sparse principal component analysis (PCA) for unsupervised feature selection (UFS)<n>We use an interpretable deep unfolding network that translates iterative optimization steps into trainable neural architectures.<n>This innovation enables automatic learning of the regularization parameters, effectively bypassing the empirical tuning requirements of conventional methods.
- Score: 5.931547772157972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse principal component analysis (PCA) is a well-established dimensionality reduction technique that is often used for unsupervised feature selection (UFS). However, determining the regularization parameters is rather challenging, and conventional approaches, including grid search and Bayesian optimization, not only bring great computational costs but also exhibit high sensitivity. To address these limitations, we first establish a structured sparse PCA formulation by integrating $\ell_1$-norm and $\ell_{2,1}$-norm to capture the local and global structures, respectively. Building upon the off-the-shelf alternating direction method of multipliers (ADMM) optimization framework, we then design an interpretable deep unfolding network that translates iterative optimization steps into trainable neural architectures. This innovation enables automatic learning of the regularization parameters, effectively bypassing the empirical tuning requirements of conventional methods. Numerical experiments on benchmark datasets validate the advantages of our proposed method over the existing state-of-the-art methods. Our code will be accessible at https://github.com/xianchaoxiu/SPCA-Net.
Related papers
- Robust PCA Based on Adaptive Weighted Least Squares and Low-Rank Matrix Factorization [2.983818075226378]
We propose a novel RPCA model that integrates adaptive weight factor update during initial component instability.<n>Our method outperforms existing non-inspired regularization approaches, offering superior performance and efficiency.
arXiv Detail & Related papers (2024-12-19T08:31:42Z) - Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes [0.0]
Topology optimization (TO) provides a principled mathematical approach for optimizing the performance of a structure by designing its material spatial distribution in a pre-defined domain and subject to a set of constraints.
We develop a new class of TO methods based on the framework of Gaussian processes (GPs) whose mean functions are parameterized via deep neural networks.
To test our method against conventional TO approaches implemented in commercial software, we evaluate it on four problems involving the minimization of dissipated power in Stokes flow.
arXiv Detail & Related papers (2024-08-07T01:01:35Z) - Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization [78.82586283794886]
$chi2$-Preference Optimization ($chi$PO) is an efficient offline alignment algorithm provably robust to overoptimization.<n>$chi$PO implements the principle of pessimism in the face of uncertainty via regularization.<n>$chi$PO's simplicity and strong guarantees make it the first practical and general-purpose offline alignment algorithm provably robust to overoptimization.
arXiv Detail & Related papers (2024-07-18T11:08:40Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - SING: A Plug-and-Play DNN Learning Technique [25.563053353709627]
We propose SING (StabIlized and Normalized Gradient), a plug-and-play technique that improves the stability and robustness of Adam(W)
SING is straightforward to implement and has minimal computational overhead, requiring only a layer-wise standardization of gradients fed to Adam(W)
arXiv Detail & Related papers (2023-05-25T12:39:45Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
arXiv Detail & Related papers (2022-05-26T07:07:26Z) - Parameter Tuning Strategies for Metaheuristic Methods Applied to
Discrete Optimization of Structural Design [0.0]
This paper presents several strategies to tune the parameters of metaheuristic methods for (discrete) design optimization of reinforced concrete (RC) structures.
A novel utility metric is proposed, based on the area under the average performance curve.
arXiv Detail & Related papers (2021-10-12T17:34:39Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Discretization-Aware Architecture Search [81.35557425784026]
This paper presents discretization-aware architecture search (DAtextsuperscript2S)
The core idea is to push the super-network towards the configuration of desired topology, so that the accuracy loss brought by discretization is largely alleviated.
Experiments on standard image classification benchmarks demonstrate the superiority of our approach.
arXiv Detail & Related papers (2020-07-07T01:18:58Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.