Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics
- URL: http://arxiv.org/abs/2205.13191v1
- Date: Thu, 26 May 2022 07:07:26 GMT
- Title: Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics
- Authors: Wei Dai, Chuanfeng Ning, Shiyu Pei, Song Zhu, Xuesong Wang
- Abstract summary: randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
- Score: 6.940097162264939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a randomized learner model, SCNs are remarkable that the random weights
and biases are assigned employing a supervisory mechanism to ensure universal
approximation and fast learning. However, the randomness makes SCNs more likely
to generate approximate linear correlative nodes that are redundant and low
quality, thereby resulting in non-compact network structure. In the light of a
fundamental principle in machine learning, that is, a model with fewer
parameters holds improved generalization. This paper proposes orthogonal SCN,
termed OSCN, to filtrate out the low-quality hidden nodes for network structure
reduction by incorporating Gram-Schmidt orthogonalization technology. The
universal approximation property of OSCN and an adaptive setting for the key
construction parameters have been presented in details. In addition, an
incremental updating scheme is developed to dynamically determine the output
weights, contributing to improved computational efficiency. Finally,
experimental results on two numerical examples and several real-world
regression and classification datasets substantiate the effectiveness and
feasibility of the proposed approach.
Related papers
- Recurrent Stochastic Configuration Networks with Incremental Blocks [0.0]
Recurrent configuration networks (RSCNs) have shown promise in modelling nonlinear dynamic systems with order uncertainty.
This paper develops the original RSCNs with block increments, termed block RSCNs (BRSCNs)
BRSCNs can simultaneously add multiple reservoir nodes (subreservoirs) during the construction.
arXiv Detail & Related papers (2024-11-18T05:58:47Z) - Deeper Insights into Learning Performance of Stochastic Configuration Networks [3.8719670789415925]
Configuration Networks (SCNs) are a class of randomized neural networks that integrate randomized algorithms within an incremental learning framework.
We present a comprehensive analysis of the impact of the supervisory mechanism on the learning performance of SCNs.
We propose a novel method for evaluating the hidden layer's output matrix, supported by a new supervisory mechanism.
arXiv Detail & Related papers (2024-11-13T11:45:39Z) - Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems [3.8719670789415925]
This paper proposes a novel deep reservoir computing framework, termed deep recurrent configuration network (DeepRSCN)
DeepRSCNs are incrementally constructed, with all reservoir nodes directly linked to the final output.
Given a set of training samples, DeepRSCNs can quickly generate learning representations, which consist of random basis functions with cascaded input readout weights.
arXiv Detail & Related papers (2024-10-28T10:33:15Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
The physics-informed neural network (PINN) can avoid generating enormous amounts of data when solving forward problems.
A dynamically configured PINN-based topology optimization (DCPINN-TO) method is proposed.
The accuracy of the displacement prediction and optimization results indicate that the DCPINN-TO method is effective and efficient.
arXiv Detail & Related papers (2023-12-12T05:35:30Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - DessiLBI: Exploring Structural Sparsity of Deep Networks via
Differential Inclusion Paths [45.947140164621096]
We propose a new approach based on differential inclusions of inverse scale spaces.
We show that DessiLBI unveils "winning tickets" in early epochs.
arXiv Detail & Related papers (2020-07-04T04:40:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Controllable Orthogonalization in Training DNNs [96.1365404059924]
Orthogonality is widely used for training deep neural networks (DNNs) due to its ability to maintain all singular values of the Jacobian close to 1.
This paper proposes a computationally efficient and numerically stable orthogonalization method using Newton's iteration (ONI)
We show that our method improves the performance of image classification networks by effectively controlling the orthogonality to provide an optimal tradeoff between optimization benefits and representational capacity reduction.
We also show that ONI stabilizes the training of generative adversarial networks (GANs) by maintaining the Lipschitz continuity of a network, similar to spectral normalization (
arXiv Detail & Related papers (2020-04-02T10:14:27Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.