論文の概要: EasyRpl: A web-based tool for modelling and analysis of cross-organisational workflows
- arxiv url: http://arxiv.org/abs/2502.20972v1
- Date: Fri, 28 Feb 2025 11:35:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:16.564210
- Title: EasyRpl: A web-based tool for modelling and analysis of cross-organisational workflows
- Title(参考訳): EasyRpl: 組織間ワークフローのモデリングと分析のためのWebベースのツール
- Authors: Muhammad Rizwan Ali, Violet Ka I Pun, Guillermo Román-Díez,
- Abstract要約: 本稿では,ユーザフレンドリーなWebベースのツールスイートであるEasyRplについて紹介する。
EasyRplは、ワークフローの変更の影響を可視化するシミュレータ、潜在的なリソースボトルネックを特定するためのピークリソース分析ツール、実行時間を推定する時間解析ツールで構成される。
- 参考スコア(独自算出の注目度): 0.48065059125122356
- License:
- Abstract: Cross-organisational workflows involve multiple concurrent, collaborative workflows across different departments or organisations, necessitating effective coordination due to their interdependent nature and shared resource requirements. The complexity of designing and managing these workflows stems from the need for comprehensive domain knowledge and a unified understanding of task dependencies and resource allocation. Existing tools often fall short in facilitating effective cross-organisational collaboration and resource sharing. This paper introduces EasyRpl, a user-friendly web-based tool suite designed to manage cross-organisational workflows. EasyRpl consists of a simulator for visualising the impact of workflow changes, a peak resource analysis tool for identifying potential resource bottlenecks, and a time analysis tool for estimating execution time. These tools assist planners with detailed insights to optimise workflow efficiency and minimise disruptions, enhancing the management of complex, interdependent workflows.
- Abstract(参考訳): 組織間のワークフローには、異なる部門や組織にまたがる複数の同時かつ協調的なワークフローが含まれます。
これらのワークフローの設計と管理の複雑さは、包括的なドメイン知識とタスク依存とリソース割り当ての統一された理解の必要性から来ています。
既存のツールは、効果的な組織間コラボレーションとリソース共有を促進するのに不足することが多い。
本稿では,組織間ワークフローを管理するために設計されたユーザフレンドリーなWebベースのツールスイートであるEasyRplを紹介する。
EasyRplは、ワークフローの変更の影響を可視化するシミュレータ、潜在的なリソースボトルネックを特定するためのピークリソース分析ツール、実行時間を推定する時間解析ツールで構成される。
これらのツールは、ワークフローの効率を最適化し、ディスラプションを最小限にし、複雑な相互依存ワークフローの管理を強化するための詳細な洞察を提供する。
関連論文リスト
- Towards Resource-Efficient Compound AI Systems [4.709762596591902]
複合AIシステムは、モデル、レトリバー、外部ツールなどの複数の相互作用コンポーネントを統合する。
現在の実装は、アプリケーションロジックと実行の詳細の密結合によって、非効率なリソース利用に悩まされています。
本稿では、動的スケジューリングとリソース認識意思決定のための宣言型ワークフロープログラミングモデルと適応型ランタイムシステムを提案する。
論文 参考訳(メタデータ) (2025-01-28T02:15:34Z) - Flow: Modularized Agentic Workflow Automation [53.073598156915615]
大規模言語モデル(LLM)を利用したマルチエージェントフレームワークは、自動計画とタスク実行において大きな成功を収めている。
しかし, 実行中のエージェントの効果的な調整は十分に研究されていない。
本稿では,エージェントによる継続的なワークフロー改善を可能にするアクティビティ・オン・頂点(AOV)グラフを定義する。
提案するマルチエージェントフレームワークは,サブタスクの効率的な同時実行,効果的なゴール達成,エラー耐性の向上を実現している。
論文 参考訳(メタデータ) (2025-01-14T04:35:37Z) - Guiding Multi-agent Multi-task Reinforcement Learning by a Hierarchical Framework with Logical Reward Shaping [16.5526277899717]
本研究の目的は,論理報酬形成を伴う多エージェント協調アルゴリズムを設計することである。
Minecraftのような環境下で様々な種類のタスクで実験が行われてきた。
論文 参考訳(メタデータ) (2024-11-02T09:03:23Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorfBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorfEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - WorkflowHub: a registry for computational workflows [0.34864924310198164]
分析記録と処理手順の記述の両方が再利用され、再利用され、利用可能であるべきである。
ワークフロー共有は、不要な再発明を減らし、再利用を促進し、非専門家のベストプラクティス分析へのアクセスを増やし、生産性を高める機会を提供する。
Hubは、コミュニティリポジトリにリンクするすべての計算レジストリに統一レジストリを提供する。
このレジストリは世界中に広がり、何百もの研究組織が関与し、700以上の登録がある。
論文 参考訳(メタデータ) (2024-10-09T14:36:27Z) - ComfyGen: Prompt-Adaptive Workflows for Text-to-Image Generation [87.39861573270173]
本稿では,各ユーザプロンプトに自動的にワークフローをカスタマイズすることを目的とする,プロンプト適応型ワークフロー生成の新しいタスクを紹介する。
本稿では,この課題に対処する2つの LLM ベースの手法を提案する。ユーザ・参照データから学習するチューニングベース手法と,既存のフローを選択するために LLM を使用するトレーニングフリー手法である。
本研究は,現場における既存研究の方向性を補完し,テキスト・画像生成の品質向上のための新たな経路を提供することを示す。
論文 参考訳(メタデータ) (2024-10-02T16:43:24Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Large Language Models to the Rescue: Reducing the Complexity in
Scientific Workflow Development Using ChatGPT [11.410608233274942]
科学システムは、大規模なデータセット上で複雑なデータ分析パイプラインを表現および実行するためにますます人気がある。
しかし、多くのブラックボックスツールと実行に必要な深いインフラストラクチャスタックが関与しているため、実装は難しい。
本研究では,大規模言語モデル,特にChatGPTの効率性を検討した。
論文 参考訳(メタデータ) (2023-11-03T10:28:53Z) - Multi-objective Optimization of Clustering-based Scheduling for
Multi-workflow On Clouds Considering Fairness [4.021507306414546]
本稿では,資源割り当てのためのクラスタリングに基づくマルチワークフロースケジューリング手法を提案する。
実験結果から,提案手法の精度は,提案手法が比較アルゴリズムよりも優れており,全体の規模とコストと,個別の公平性を著しく損なうことなく性能が向上することが示された。
論文 参考訳(メタデータ) (2022-05-23T10:25:16Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning(MEL)は、エッジデバイス上で機械学習(ML)モデルの分散トレーニングを特徴とする、協調学習パラダイムである。
MELでは、異なるデータセットで複数の学習タスクが共存する可能性がある。
本稿では, エネルギー消費, 精度, 解複雑性のトレードオフを容易にする軽量なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-02T07:37:10Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
我々は,共通バックボーンと独立タスク固有のヘッドで表される,密集予測タスクのためのマルチタスク環境を考える。
マルチタスク設定では,グローバルやローカルなど,さまざまな注意に基づくコンテキストを探索する。
タスクペアごとに利用可能なすべてのコンテキストのプールをサンプリングするAdaptive Task-Relational Contextモジュールを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:45:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。