論文の概要: Reviewing Clinical Knowledge in Medical Large Language Models: Training and Beyond
- arxiv url: http://arxiv.org/abs/2502.20988v2
- Date: Mon, 11 Aug 2025 15:03:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.196138
- Title: Reviewing Clinical Knowledge in Medical Large Language Models: Training and Beyond
- Title(参考訳): 医療用大言語モデルにおける臨床知識のレビュー : トレーニングとそれ以上
- Authors: Qiyuan Li, Haijiang Liu, Caicai Guo, Chao Gao, Deyu Chen, Meng Wang, Feng Gao, Frank van Harmelen, Jinguang Gu,
- Abstract要約: 臨床知識は現実の医療実践において広く研究されている。
この種の知識を大規模言語モデルに統合することを目的とした研究努力が顕著に増加した。
臨床知識をトレーニングベース、KG支援、RAG支援LSMに組み込むための様々な取り組みについてレビューする。
- 参考スコア(独自算出の注目度): 17.18909853414425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The large-scale development of large language models (LLMs) in medical contexts, such as diagnostic assistance and treatment recommendations, necessitates that these models possess accurate medical knowledge and deliver traceable decision-making processes. Clinical knowledge, encompassing the insights gained from research on the causes, prognosis, diagnosis, and treatment of diseases, has been extensively examined within real-world medical practices. Recently, there has been a notable increase in research efforts aimed at integrating this type of knowledge into LLMs, encompassing not only traditional text and multimodal data integration but also technologies such as knowledge graphs (KGs) and retrieval-augmented generation (RAG). In this paper, we review the various initiatives to embed clinical knowledge into training-based, KG-supported, and RAG-assisted LLMs. We begin by gathering reliable knowledge sources from the medical domain, including databases and datasets. Next, we evaluate implementations for integrating clinical knowledge through specialized datasets and collaborations with external knowledge sources such as KGs and relevant documentation. Furthermore, we discuss the applications of the developed medical LLMs in the industrial sector to assess the disparity between models developed in academic settings and those in industry. We conclude the survey by presenting evaluation systems applicable to relevant tasks and identifying potential challenges facing this field. In this review, we do not aim for completeness, since any ostensibly complete review would soon be outdated. Our goal is to illustrate diversity by selecting representative and accessible items from current research and industry practices, reflecting real-world situations rather than claiming completeness. Thus, we emphasize showcasing diverse approaches.
- Abstract(参考訳): 医学的文脈における大規模言語モデル(LLM)の大規模開発は、診断補助や治療勧告など、これらのモデルが正確な医療知識を有し、追跡可能な意思決定プロセスを提供する必要がある。
臨床知識は、疾患の原因、予後、診断、治療に関する研究から得られた知見を包含し、現実の医療実践において広範囲に研究されてきた。
近年,従来のテキストやマルチモーダルデータの統合だけでなく,知識グラフ(KG)や検索強化生成(RAG)といった技術も対象とする,この種の知識をLLMに統合する研究が注目されている。
本稿では,臨床知識をトレーニングベース,KG支援,RAG支援LSMに組み込むための様々な取り組みについて概説する。
まずは、データベースやデータセットを含む、信頼できる知識ソースを医療領域から収集することから始めます。
次に,KGsや関連資料などの外部知識ソースと協調して,専門的なデータセットを通じて臨床知識を統合する実装を評価する。
さらに, 産業分野における医療用LSMの応用について検討し, 学術的な環境下で開発されたモデルと産業におけるモデルとの相違について検討した。
本研究は,関連する課題に適用可能な評価システムを提示し,この分野に直面する潜在的な課題を特定することで,調査を締めくくった。
このレビューでは、目に見える完全なレビューはすぐに時代遅れになるので、完全性を目指していません。
私たちのゴールは、完全性を主張するのではなく、現実の状況を反映して、現在の研究や産業プラクティスから代表的かつアクセス可能な項目を選択し、多様性を説明することです。
そこで我々は,多様なアプローチの提示を強調した。
関連論文リスト
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
医学における大きな言語モデル(LLM)は印象的な能力を実現しているが、体系的で透明で検証可能な推論を行う能力に重大なギャップが残っている。
本稿は、この新興分野に関する最初の体系的なレビューを提供する。
本稿では,学習時間戦略とテスト時間メカニズムに分類した推論強化手法の分類法を提案する。
論文 参考訳(メタデータ) (2025-08-01T14:41:31Z) - Biomedical Foundation Model: A Survey [84.26268124754792]
ファンデーションモデルは、広範なラベルなしデータセットから学習する大規模な事前訓練モデルである。
これらのモデルは、質問応答や視覚的理解といった様々な応用に適応することができる。
本研究は,生物医学分野における基礎モデルの可能性を探るものである。
論文 参考訳(メタデータ) (2025-03-03T22:42:00Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - A Comprehensive Survey on Evaluating Large Language Model Applications in the Medical Industry [2.1717945745027425]
大規模言語モデル(LLM)は、言語理解と生成の高度な能力で様々な産業に影響を与えている。
この包括的調査は、医療におけるLSMの広範な適用と必要な評価を概説する。
本調査は,臨床環境,医療用テキストデータ処理,研究,教育,公衆衛生への意識といった分野におけるLCM応用の詳細な分析を行うために構成されている。
論文 参考訳(メタデータ) (2024-04-24T09:55:24Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
本稿では,知識向上と臨床パスウェイ符号化フレームワークを用いた医療対話について紹介する。
このフレームワークは、医療知識グラフを介して外部知識増強モジュールと、医療機関および医師の行動を介して、内部臨床経路をコードする。
論文 参考訳(メタデータ) (2024-03-11T10:57:45Z) - A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises [59.4999994297993]
この総合的なレビューは、医療知識グラフ(HKG)の現状の概要を提供することを目的としている。
我々は,既存のHKGに関する文献を網羅的に分析し,その構築方法,活用技術,応用について考察した。
このレビューは、HKGsが生物医学研究や臨床実践に大きな影響を与える可能性を強調している。
論文 参考訳(メタデータ) (2023-06-07T21:51:56Z) - Machine Learning and Deep Learning Methods for Building Intelligent
Systems in Medicine and Drug Discovery: A Comprehensive Survey [0.0]
Artificail Intelligenceベースのフレームワークは、医療業界に急速に革命をもたらしている。
これらのインテリジェントシステムは、機械学習とディープラーニングに基づく、疾患の早期診断のための堅牢なモデルで構築されている。
本稿では,16の専門分野にわたる機械学習と深層学習の応用に関する調査に焦点をあてる。
論文 参考訳(メタデータ) (2021-07-19T14:26:03Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
ゲノム学の機械学習応用に関する文献を、治療開発のレンズでレビューします。
治療パイプライン全体にわたるゲノミクス応用における22の機械学習を同定する。
この分野における7つの重要な課題を、拡大と影響の機会として挙げる。
論文 参考訳(メタデータ) (2021-05-03T21:20:20Z) - Surgical Data Science -- from Concepts toward Clinical Translation [67.543698133416]
外科的データサイエンスは、データの取得、組織化、分析、モデリングを通じて介入医療の質を向上させることを目的としている。
私たちは、その根底にある理由を明かし、この分野における今後の進歩のロードマップを提供しました。
論文 参考訳(メタデータ) (2020-10-30T14:20:16Z) - Artificial intelligence in medicine and healthcare: a review and
classification of current and near-future applications and their ethical and
social Impact [0.0]
この研究は、既存のソフトウェア、パーソナルモニタリングデバイス、遺伝子検査と編集ツール、パーソナライズされたデジタルモデル、オンラインプラットフォーム、拡張現実デバイス、外科的および補助ロボティクスなど、研究技術の現状の分析に基づいている。
われわれは,「拡張パーソナライズドメディカル」の概念を提示し,解説する。
ユビキタス情報時代における医師と患者の役割の変容について研究し、医療部門を「フェイクベース」、「患者生成」、「科学的に調整」に分類し、さらに詳細な分析を必要とするいくつかの側面に注意を向ける。
論文 参考訳(メタデータ) (2020-01-22T15:39:42Z) - Bridging the gap between AI and Healthcare sides: towards developing
clinically relevant AI-powered diagnosis systems [18.95904791202457]
医療・インフォマティクスにおける医療画像の専門家,医師,ジェネラリストを対象に,臨床的に価値のあるAI研究ワークショップを開催した。
そこで, 医師を対象としたアンケート調査により, データ拡張と医師養成の観点から, GANに基づく画像拡張プロジェクトを評価した。
論文 参考訳(メタデータ) (2020-01-12T12:45:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。