A Non-contrast Head CT Foundation Model for Comprehensive Neuro-Trauma Triage
- URL: http://arxiv.org/abs/2502.21106v1
- Date: Fri, 28 Feb 2025 14:44:55 GMT
- Title: A Non-contrast Head CT Foundation Model for Comprehensive Neuro-Trauma Triage
- Authors: Youngjin Yoo, Bogdan Georgescu, Yanbo Zhang, Sasa Grbic, Han Liu, Gabriela D. Aldea, Thomas J. Re, Jyotipriya Das, Poikavila Ullaskrishnan, Eva Eibenberger, Andrei Chekkoury, Uttam K. Bodanapally, Savvas Nicolaou, Pina C. Sanelli, Thomas J. Schroeppel, Yvonne W. Lui, Eli Gibson,
- Abstract summary: Recent advancements in AI and medical imaging offer transformative potential in emergency head CT interpretation.<n>This study introduces a 3D foundation model for detecting diverse neuro-trauma findings with high accuracy and efficiency.
- Score: 5.39145170841044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in AI and medical imaging offer transformative potential in emergency head CT interpretation for reducing assessment times and improving accuracy in the face of an increasing request of such scans and a global shortage in radiologists. This study introduces a 3D foundation model for detecting diverse neuro-trauma findings with high accuracy and efficiency. Using large language models (LLMs) for automatic labeling, we generated comprehensive multi-label annotations for critical conditions. Our approach involved pretraining neural networks for hemorrhage subtype segmentation and brain anatomy parcellation, which were integrated into a pretrained comprehensive neuro-trauma detection network through multimodal fine-tuning. Performance evaluation against expert annotations and comparison with CT-CLIP demonstrated strong triage accuracy across major neuro-trauma findings, such as hemorrhage and midline shift, as well as less frequent critical conditions such as cerebral edema and arterial hyperdensity. The integration of neuro-specific features significantly enhanced diagnostic capabilities, achieving an average AUC of 0.861 for 16 neuro-trauma conditions. This work advances foundation models in medical imaging, serving as a benchmark for future AI-assisted neuro-trauma diagnostics in emergency radiology.
Related papers
- NeuroSymAD: A Neuro-Symbolic Framework for Interpretable Alzheimer's Disease Diagnosis [35.4733004746959]
NeuroSymAD is a neuro-symbolic framework that synergizes neural networks with symbolic reasoning.
A neural network percepts brain MRI scans, while a large language model distills medical rules to guide a symbolic system in reasoning over biomarkers and medical history.
arXiv Detail & Related papers (2025-03-01T14:29:39Z) - Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit.<n>We introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations.<n> SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations.
arXiv Detail & Related papers (2025-02-15T06:33:02Z) - Synthetic CT image generation from CBCT: A Systematic Review [44.01505745127782]
Generation of synthetic CT (sCT) images from cone-beam CT (CBCT) data using deep learning methodologies represents a significant advancement in radiation oncology.<n>A total of 35 relevant studies were identified and analyzed, revealing the prevalence of deep learning approaches in the generation of sCT.
arXiv Detail & Related papers (2025-01-22T13:54:07Z) - Deep Learning for Early Alzheimer Disease Detection with MRI Scans [1.9806397201363817]
Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients.<n>This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis.<n>We perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency.
arXiv Detail & Related papers (2025-01-17T07:30:16Z) - Detection of Vascular Leukoencephalopathy in CT Images [0.0]
This study explores AI's role in diagnosing leukoencephalopathy, a small vessel disease of the brain.<n>We utilized a dataset of approximately 1200 patients with axial brain CT scans to train convolutional neural networks (CNNs) for binary disease classification.
arXiv Detail & Related papers (2025-01-16T22:21:00Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [43.73298205923969]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.
Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.
We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - Advanced AI Framework for Enhanced Detection and Assessment of Abdominal Trauma: Integrating 3D Segmentation with 2D CNN and RNN Models [5.817643726988823]
This study explores the application of artificial intelligence (AI) and machine learning (ML) to improve the speed and accuracy of abdominal trauma diagnosis.
We developed an advanced AI-based model combining 3D segmentation, 2D Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) to enhance diagnostic performance.
Our model processes abdominal CT scans to provide real-time, precise assessments, thereby improving clinical decision-making and patient outcomes.
arXiv Detail & Related papers (2024-07-23T04:18:34Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - GCS-ICHNet: Assessment of Intracerebral Hemorrhage Prognosis using
Self-Attention with Domain Knowledge Integration [19.51978172091416]
Intracerebral Hemorrhage (ICH) is a severe condition resulting from damaged brain blood vessel ruptures.
This paper introduces a novel deep learning algorithm, GCS-ICHNet, which integrates multimodal brain CT data and the Glasgow Coma Scale score to improve prognosis.
arXiv Detail & Related papers (2023-11-08T15:51:12Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Characterization Multimodal Connectivity of Brain Network by Hypergraph
GAN for Alzheimer's Disease Analysis [30.99183477161096]
multimodal neuroimaging data to characterize brain network is currently an advanced technique for Alzheimer's disease(AD) Analysis.
We propose a novel Hypergraph Generative Adversarial Networks(HGGAN) to generate multimodal connectivity of Brain Network from rs-fMRI combination with DTI.
arXiv Detail & Related papers (2021-07-21T09:02:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.