論文の概要: Large Language Model-Based Benchmarking Experiment Settings for Evolutionary Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2502.21108v1
- Date: Fri, 28 Feb 2025 14:46:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:36.307299
- Title: Large Language Model-Based Benchmarking Experiment Settings for Evolutionary Multi-Objective Optimization
- Title(参考訳): 進化的多目的最適化のための大規模言語モデルに基づくベンチマーク実験設定
- Authors: Lie Meng Pang, Hisao Ishibuchi,
- Abstract要約: 本研究では,大規模言語モデルにおけるEMOアルゴリズムの性能比較に関する暗黙の仮定について検討する。
LLMは古典的なベンチマーク設定をしばしば提案する。
- 参考スコア(独自算出の注目度): 5.072077366588175
- License:
- Abstract: When we manually design an evolutionary optimization algorithm, we implicitly or explicitly assume a set of target optimization problems. In the case of automated algorithm design, target optimization problems are usually explicitly shown. Recently, the use of large language models (LLMs) for the design of evolutionary multi-objective optimization (EMO) algorithms have been examined in some studies. In those studies, target multi-objective problems are not always explicitly shown. It is well known in the EMO community that the performance evaluation results of EMO algorithms depend on not only test problems but also many other factors such as performance indicators, reference point, termination condition, and population size. Thus, it is likely that the designed EMO algorithms by LLMs depends on those factors. In this paper, we try to examine the implicit assumption about the performance comparison of EMO algorithms in LLMs. For this purpose, we ask LLMs to design a benchmarking experiment of EMO algorithms. Our experiments show that LLMs often suggest classical benchmark settings: Performance examination of NSGA-II, MOEA/D and NSGA-III on ZDT, DTLZ and WFG by HV and IGD under the standard parameter specifications.
- Abstract(参考訳): 進化的最適化アルゴリズムを手動で設計する場合、対象とする最適化問題の集合を暗黙的または明示的に仮定する。
自動アルゴリズム設計の場合、目標最適化問題は通常明示的に示される。
近年,進化的多目的最適化 (EMO) アルゴリズムの設計に大規模言語モデル (LLM) を用いることが研究されている。
これらの研究において、対象の多目的問題は必ずしも明示的に示されない。
EMOコミュニティでは、EMOアルゴリズムの性能評価結果がテスト問題だけでなく、性能指標、基準点、終了条件、人口規模など多くの要因にも依存していることが知られている。
したがって, LLM による EMO アルゴリズムの設計は, これらの要因に依存する可能性が高い。
本稿では,LLMにおけるEMOアルゴリズムの性能比較に関する暗黙の仮定について検討する。
この目的のために,我々はLEMにEMOアルゴリズムのベンチマーク実験を設計するよう依頼する。
標準パラメータ仕様では, NSGA-II, MOEA/D, NSGA-IIIのZDT, DTLZ, WFGのHVおよびIGDによる性能評価を行った。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
大規模言語モデル(LLM)はアルゴリズムのサブルーチンとして使用される。
LLMは素晴らしい経験的成功を収めた。
提案フレームワークは,LLMアルゴリズムの進歩を約束する。
論文 参考訳(メタデータ) (2024-07-20T07:39:07Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis [17.89683724761454]
進化的多目的最適化において,ブロック座標降下が効率的である条件が存在するかを検討する。
本稿では,GSEMOのブロックコーディネートバージョンを提案し,その実行時間を標準GSEMOアルゴリズムと比較する。
論文 参考訳(メタデータ) (2024-04-04T23:50:18Z) - Large Language Model for Multi-objective Evolutionary Optimization [26.44390674048544]
多目的進化アルゴリズム(MOEA)は多目的最適化問題(MOP)を解決する主要な方法である
近年、MOEAにおいて手作業で設計された演算子を学習ベースの演算子に置き換える試みが試みられている。
本研究は,MOEA演算子の設計に強力な大規模言語モデル(LLM)を活用する新しいアプローチについて検討する。
論文 参考訳(メタデータ) (2023-10-19T07:46:54Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Improving Performance Insensitivity of Large-scale Multiobjective
Optimization via Monte Carlo Tree Search [7.34812867861951]
モンテカルロ木探索に基づく大規模多目的最適化問題の解法を提案する。
提案手法は,モンテカルロ木上に新たなノードを構築するための決定変数をサンプリングし,最適化と評価を行う。
大規模な決定変数による性能感度を低下させるために、さらなる探索のための評価が良いノードを選択する。
論文 参考訳(メタデータ) (2023-04-08T17:15:49Z) - Multi objective Fitness Dependent Optimizer Algorithm [19.535715565093764]
本稿では、最近導入されたフィットネス依存型(FDO)の多目的変種を提案する。
このアルゴリズムはMOFDO(Multi objective Fitness Dependent)と呼ばれ、FDOのように5種類の知識(situational, normative, topographical, domain, historical knowledge)を備えている。
提案アルゴリズムは,多種多様な分散可能な実現可能解を提供することで,意思決定者がより適用可能な快適な選択をすることができる。
論文 参考訳(メタデータ) (2023-01-26T06:33:53Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
マルチモーダル・多目的最適化問題(MMOP)を解くための定常進化アルゴリズムを提案する。
本報告では,1000関数評価の低計算予算を用いて,様々なテストスイートから得られた21個のMMOPの性能について報告する。
論文 参考訳(メタデータ) (2022-01-18T03:31:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。