論文の概要: "No negatives needed": weakly-supervised regression for interpretable tumor detection in whole-slide histopathology images
- arxiv url: http://arxiv.org/abs/2502.21109v1
- Date: Fri, 28 Feb 2025 14:47:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:40:47.035352
- Title: "No negatives needed": weakly-supervised regression for interpretable tumor detection in whole-slide histopathology images
- Title(参考訳): 非陰性」:全スライディング組織像における腫瘍検出のための弱監督的回帰
- Authors: Marina D'Amato, Jeroen van der Laak, Francesco Ciompi,
- Abstract要約: マルチインスタンス学習は、手動のアノテーションを必要とせず、大規模なデータによる弱い教師付き腫瘍検出のための広く使われているアプローチとして登場した。
本研究は, 腫瘍検出を回帰課題として再検討し, デジタル画像から腫瘍率を推定することにより, この限界に対処する。
複数の臓器, 検体タイプ, 臨床シナリオに適用し, 弱制御回帰フレームワークの解析を行った。
- 参考スコア(独自算出の注目度): 3.4134277010517344
- License:
- Abstract: Accurate tumor detection in digital pathology whole-slide images (WSIs) is crucial for cancer diagnosis and treatment planning. Multiple Instance Learning (MIL) has emerged as a widely used approach for weakly-supervised tumor detection with large-scale data without the need for manual annotations. However, traditional MIL methods often depend on classification tasks that require tumor-free cases as negative examples, which are challenging to obtain in real-world clinical workflows, especially for surgical resection specimens. We address this limitation by reformulating tumor detection as a regression task, estimating tumor percentages from WSIs, a clinically available target across multiple cancer types. In this paper, we provide an analysis of the proposed weakly-supervised regression framework by applying it to multiple organs, specimen types and clinical scenarios. We characterize the robustness of our framework to tumor percentage as a noisy regression target, and introduce a novel concept of amplification technique to improve tumor detection sensitivity when learning from small tumor regions. Finally, we provide interpretable insights into the model's predictions by analyzing visual attention and logit maps. Our code is available at https://github.com/DIAGNijmegen/tumor-percentage-mil-regression.
- Abstract(参考訳): デジタル病理画像(WSI)における正確な腫瘍検出は,がんの診断と治療計画に不可欠である。
マルチインスタンスラーニング(MIL)は、手動のアノテーションを必要とせず、大規模データによる弱い教師付き腫瘍検出に広く用いられているアプローチである。
しかし、従来のMIL法は、腫瘍のない症例を否定的な例として必要とする分類作業に依存しており、特に外科的切除標本において、実際の臨床ワークフローを得るのが困難である。
本研究は, 腫瘍検出を回帰課題として再検討し, 臨床対象であるWSIsから腫瘍率を推定することにより, この限界に対処する。
本稿では,複数の臓器,検体タイプ,臨床シナリオに応用して,弱教師付き回帰フレームワークを提案する。
本研究は, 腫瘍率に対する枠組みの頑健さをノイズレグレッションターゲットとして特徴付けるとともに, 小さな腫瘍領域から学ぶ際に, 腫瘍検出感度を向上させるために, 増幅法の新たな概念を導入する。
最後に、視覚的注意とロジットマップを分析し、モデルの予測に対する解釈可能な洞察を提供する。
私たちのコードはhttps://github.com/DIAGNijmegen/tumor-percentage-mil-regression.comで利用可能です。
関連論文リスト
- Towards a Comprehensive Benchmark for Pathological Lymph Node Metastasis in Breast Cancer Sections [21.75452517154339]
我々は1,399枚のスライド画像(WSI)と、Camelyon-16とCamelyon-17データセットのラベルを再処理した。
再発腫瘍領域の大きさから,2重複癌検診を4段階に改善した。
論文 参考訳(メタデータ) (2024-11-16T09:19:24Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT [1.024113475677323]
本研究は,脳腫瘍の診断・分類に深層学習(DL)技術を活用することでこの問題に対処する。
NBML(National Brain Mapping Lab)は、30の腫瘍患者と51の正常患者を含む81の患者を対象とする。
このアプローチは、信頼できる腫瘍の検出と分類において有望な進歩を示し、現実の医療画像シナリオにおける腫瘍診断の潜在的な進歩を提供する。
論文 参考訳(メタデータ) (2024-01-06T20:53:02Z) - Cross-attention-based saliency inference for predicting cancer
metastasis on whole slide images [3.7282630026096597]
乳がんリンパ節の微小転移を全スライド画像上で同定するために, クロスアテンションに基づく静注型インスタンス推定MIL (CASiiMIL) を提案する。
陰性表現学習アルゴリズムを導入し,腫瘍WSIに対する感度を向上させるために,有意な注意重み付けの学習を容易にする。
提案モデルでは, 2つの腫瘍転移検出データセットに対して, 最先端のMIL法より優れていた。
論文 参考訳(メタデータ) (2023-09-18T00:56:19Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - Expectation-Maximization Regularized Deep Learning for Weakly Supervised
Tumor Segmentation for Glioblastoma [8.24450401153384]
本研究では,弱監督腫瘍分割のためのEM正規化ディープラーニング(EMReDL)モデルを提案する。
この枠組みは周囲の脳組織への拡散浸潤を特徴とする悪性腫瘍の一種であるグリオ芽腫に特化していた。
論文 参考訳(メタデータ) (2021-01-21T18:14:43Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。