論文の概要: CuPID: Leveraging Masked Single-Lead ECG Modelling for Enhancing the Representations
- arxiv url: http://arxiv.org/abs/2502.21127v1
- Date: Fri, 28 Feb 2025 15:07:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:41:14.577549
- Title: CuPID: Leveraging Masked Single-Lead ECG Modelling for Enhancing the Representations
- Title(参考訳): CuPID: 表現強化のためのマスク付きシングルリードECGモデリングの活用
- Authors: Adtian Atienza, Gouthamaan Manimaran, Jakob E. Bardram, Sadasivan Puthusserypady,
- Abstract要約: 単誘導ECGに適した新しいMDM法CuPIDについて述べる。
CuPIDは、スペクトログラム由来のコンテキストをデコーダにキューすることで既存のMDM技術を強化し、エンコーダにより詳細な表現のインセンティブを与える。
- 参考スコア(独自算出の注目度): 6.325706681659489
- License:
- Abstract: Wearable sensing devices, such as Electrocardiogram (ECG) heart-rate monitors, will play a crucial role in the future of digital health. This continuous monitoring leads to massive unlabeled data, incentivizing the development of unsupervised learning frameworks. While Masked Data Modelling (MDM) techniques have enjoyed wide use, their direct application to single-lead ECG data is suboptimal due to the decoder's difficulty handling irregular heartbeat intervals when no contextual information is provided. In this paper, we present Cueing the Predictor Increments the Detailing (CuPID), a novel MDM method tailored to single-lead ECGs. CuPID enhances existing MDM techniques by cueing spectrogram-derived context to the decoder, thus incentivizing the encoder to produce more detailed representations. This has a significant impact on the encoder's performance across a wide range of different configurations, leading CuPID to outperform state-of-the-art methods in a variety of downstream tasks.
- Abstract(参考訳): 心電図(ECG)心拍モニターなどのウェアラブルセンサーは、デジタルヘルスの将来において重要な役割を果たす。
この継続的監視は、大量のラベルのないデータをもたらし、教師なし学習フレームワークの開発にインセンティブを与える。
Masked Data Modelling (MDM) 技術は広く利用されているが、デコーダが不規則な心拍間隔を扱うのが困難であるため、シングルリードのECGデータへの直接適用は最適ではない。
本稿では,単誘導ECGに適した新しいMDM手法CuPIDを提案する。
CuPIDは、スペクトログラム由来のコンテキストをデコーダにキューすることで既存のMDM技術を強化し、エンコーダにより詳細な表現のインセンティブを与える。
CuPIDはさまざまなダウンストリームタスクにおいて、最先端のメソッドよりも優れたパフォーマンスを実現している。
関連論文リスト
- Multi-scale Masked Autoencoder for Electrocardiogram Anomaly Detection [5.614826802517409]
MMAE-ECGはECG信号を非重複セグメントに分割し、各セグメントは学習可能な位置埋め込みを割り当てる。
新しいマルチスケールマスキング戦略とマルチスケールアテンション機構は、異なる位置埋め込みとともに、軽量なトランスフォーマーエンコーダを実現する。
論文 参考訳(メタデータ) (2025-02-08T08:18:38Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - C-MELT: Contrastive Enhanced Masked Auto-Encoders for ECG-Language Pre-Training [10.088785685439134]
本稿では,コントラッシブマスクを用いた自動エンコーダアーキテクチャを用いて,ECGとテキストデータを事前学習するフレームワークであるC-MELTを提案する。
C-MELTは、生成性の強さと識別能力の強化を一意に組み合わせて、堅牢なクロスモーダル表現を実現する。
論文 参考訳(メタデータ) (2024-10-03T01:24:09Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Tokenization, Fusion, and Augmentation: Towards Fine-grained Multi-modal Entity Representation [51.80447197290866]
マルチモーダル知識グラフ補完(MMKGC)は、与えられた知識グラフから観測されていない知識を発見することを目的としている。
既存のMMKGCメソッドは通常、事前訓練されたモデルでマルチモーダルな特徴を抽出する。
エンティティの微細なマルチモーダル表現をトークン化し、融合し、拡張する新しいフレームワークであるMyGOを紹介します。
論文 参考訳(メタデータ) (2024-04-15T05:40:41Z) - Unsupervised Pre-Training Using Masked Autoencoders for ECG Analysis [4.3312979375047025]
本稿では、心電図(ECG)信号のためのマスク付きオートエンコーダ(MAE)に基づく教師なし事前トレーニング手法を提案する。
さらに、ECG分析のための完全なフレームワークを形成するためのタスク固有の微調整を提案する。
フレームワークは高レベルで普遍的で、特定のモデルアーキテクチャやタスクに個別に適応していない。
論文 参考訳(メタデータ) (2023-10-17T11:19:51Z) - Semi-Supervised Learning for Multi-Label Cardiovascular Diseases
Prediction:A Multi-Dataset Study [17.84069222975825]
現在の心電図に基づく診断システムは,ディープラーニング技術の急速な発展により,有望な性能を示す。
ラベル不足、複数のCVDの共起、目に見えないデータセットのパフォーマンスの低下は、ディープラーニングベースのモデルの普及を妨げる。
本稿では,複数のCVDを同時に認識するマルチラベル半教師付きモデル(ECGMatch)を提案する。
論文 参考訳(メタデータ) (2023-06-18T07:46:19Z) - EDMAE: An Efficient Decoupled Masked Autoencoder for Standard View
Identification in Pediatric Echocardiography [16.215207742732893]
The Efficient Decoupled Masked Autoencoder (EDMAE)は、小児心エコー図における標準視像を認識するための新しい自己教師型手法である。
EDMAEは、MAEエンコーダのViT構造の代わりに純粋な畳み込み演算を使用する。
提案手法は,27の標準心エコー図で高い分類精度を実現する。
論文 参考訳(メタデータ) (2023-02-27T15:17:01Z) - GD-MAE: Generative Decoder for MAE Pre-training on LiDAR Point Clouds [72.60362979456035]
Masked Autoencoders (MAE)は、大規模な3Dポイントクラウドでの探索が難しい。
我々は,周囲のコンテキストを自動的にマージするためのtextbfGenerative textbfDecoder for MAE (GD-MAE)を提案する。
提案手法の有効性を, KITTI と ONCE の2つの大規模ベンチマークで実証した。
論文 参考訳(メタデータ) (2022-12-06T14:32:55Z) - Semi-supervised Left Atrium Segmentation with Mutual Consistency
Training [60.59108570938163]
3次元MR画像からの半教師付き左房分割のための新しいMultual Consistency Network(MC-Net)を提案する。
我々のMC-Netは1つのエンコーダと2つのわずかに異なるデコーダから構成されており、2つのデコーダの予測誤差は教師なしの損失として変換される。
我々は,公開左心房(la)データベース上でmc-netを評価し,ラベルなしデータを効果的に活用することで印象的な性能向上を実現する。
論文 参考訳(メタデータ) (2021-03-04T09:34:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。