Scalable Decision-Making in Stochastic Environments through Learned Temporal Abstraction
- URL: http://arxiv.org/abs/2502.21186v2
- Date: Mon, 03 Mar 2025 02:33:31 GMT
- Title: Scalable Decision-Making in Stochastic Environments through Learned Temporal Abstraction
- Authors: Baiting Luo, Ava Pettet, Aron Laszka, Abhishek Dubey, Ayan Mukhopadhyay,
- Abstract summary: We present Latent Macro Action Planner (L-MAP), which addresses the challenge of learning to make decisions in high-dimensional continuous action spaces.<n>L-MAP learns a set of temporally extended macro-actions through a state-conditional Vector Quantized Variational Autoencoder (VQ-VAE)<n>In offline RL settings, including continuous control tasks, L-MAP efficiently searches over discrete latent actions to yield high expected returns.
- Score: 7.918703013303246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential decision-making in high-dimensional continuous action spaces, particularly in stochastic environments, faces significant computational challenges. We explore this challenge in the traditional offline RL setting, where an agent must learn how to make decisions based on data collected through a stochastic behavior policy. We present Latent Macro Action Planner (L-MAP), which addresses this challenge by learning a set of temporally extended macro-actions through a state-conditional Vector Quantized Variational Autoencoder (VQ-VAE), effectively reducing action dimensionality. L-MAP employs a (separate) learned prior model that acts as a latent transition model and allows efficient sampling of plausible actions. During planning, our approach accounts for stochasticity in both the environment and the behavior policy by using Monte Carlo tree search (MCTS). In offline RL settings, including stochastic continuous control tasks, L-MAP efficiently searches over discrete latent actions to yield high expected returns. Empirical results demonstrate that L-MAP maintains low decision latency despite increased action dimensionality. Notably, across tasks ranging from continuous control with inherently stochastic dynamics to high-dimensional robotic hand manipulation, L-MAP significantly outperforms existing model-based methods and performs on-par with strong model-free actor-critic baselines, highlighting the effectiveness of the proposed approach in planning in complex and stochastic environments with high-dimensional action spaces.
Related papers
- Latent Diffusion Planning for Imitation Learning [78.56207566743154]
Latent Diffusion Planning (LDP) is a modular approach consisting of a planner and inverse dynamics model.
By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data.
On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches.
arXiv Detail & Related papers (2025-04-23T17:53:34Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
We learn high-quality traces from POMDP executions generated by any solver.
We exploit data- and time-efficient Indu Logic Programming (ILP) to generate interpretable belief-based policy specifications.
We show that learneds expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specifics within lower computational time.
arXiv Detail & Related papers (2024-02-29T15:36:01Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Model-free Motion Planning of Autonomous Agents for Complex Tasks in
Partially Observable Environments [3.7660066212240753]
Motion planning of autonomous agents in partially known environments is a challenging problem.
This paper proposes a model-free reinforcement learning approach to address this problem.
We show that our proposed method effectively addresses environment, action, and observation uncertainties.
arXiv Detail & Related papers (2023-04-30T19:57:39Z) - Sample-efficient Real-time Planning with Curiosity Cross-Entropy Method
and Contrastive Learning [21.995159117991278]
We propose Curiosity CEM, an improved version of the Cross-Entropy Method (CEM) algorithm for encouraging exploration via curiosity.
Our proposed method maximizes the sum of state-action Q values over the planning horizon, in which these Q values estimate the future extrinsic and intrinsic reward.
Experiments on image-based continuous control tasks from the DeepMind Control suite show that CCEM is by a large margin more sample-efficient than previous MBRL algorithms.
arXiv Detail & Related papers (2023-03-07T10:48:20Z) - Accelerated Reinforcement Learning for Temporal Logic Control Objectives [10.216293366496688]
This paper addresses the problem of learning control policies for mobile robots modeled as unknown Markov Decision Processes (MDPs)
We propose a novel accelerated model-based reinforcement learning (RL) algorithm for control objectives that is capable of learning control policies significantly faster than related approaches.
arXiv Detail & Related papers (2022-05-09T17:09:51Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.