Model-free Motion Planning of Autonomous Agents for Complex Tasks in
Partially Observable Environments
- URL: http://arxiv.org/abs/2305.00561v1
- Date: Sun, 30 Apr 2023 19:57:39 GMT
- Title: Model-free Motion Planning of Autonomous Agents for Complex Tasks in
Partially Observable Environments
- Authors: Junchao Li, Mingyu Cai, Zhen Kan and Shaoping Xiao
- Abstract summary: Motion planning of autonomous agents in partially known environments is a challenging problem.
This paper proposes a model-free reinforcement learning approach to address this problem.
We show that our proposed method effectively addresses environment, action, and observation uncertainties.
- Score: 3.7660066212240753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion planning of autonomous agents in partially known environments with
incomplete information is a challenging problem, particularly for complex
tasks. This paper proposes a model-free reinforcement learning approach to
address this problem. We formulate motion planning as a probabilistic-labeled
partially observable Markov decision process (PL-POMDP) problem and use linear
temporal logic (LTL) to express the complex task. The LTL formula is then
converted to a limit-deterministic generalized B\"uchi automaton (LDGBA). The
problem is redefined as finding an optimal policy on the product of PL-POMDP
with LDGBA based on model-checking techniques to satisfy the complex task. We
implement deep Q learning with long short-term memory (LSTM) to process the
observation history and task recognition. Our contributions include the
proposed method, the utilization of LTL and LDGBA, and the LSTM-enhanced deep Q
learning. We demonstrate the applicability of the proposed method by conducting
simulations in various environments, including grid worlds, a virtual office,
and a multi-agent warehouse. The simulation results demonstrate that our
proposed method effectively addresses environment, action, and observation
uncertainties. This indicates its potential for real-world applications,
including the control of unmanned aerial vehicles (UAVs).
Related papers
- ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [39.606908488885125]
ET-Plan-Bench is a benchmark for embodied task planning using Large Language Models (LLMs)
It features a controllable and diverse set of embodied tasks varying in different levels of difficulties and complexities.
Our benchmark distinguishes itself as a large-scale, quantifiable, highly automated, and fine-grained diagnostic framework.
arXiv Detail & Related papers (2024-10-02T19:56:38Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Accelerated Reinforcement Learning for Temporal Logic Control Objectives [10.216293366496688]
This paper addresses the problem of learning control policies for mobile robots modeled as unknown Markov Decision Processes (MDPs)
We propose a novel accelerated model-based reinforcement learning (RL) algorithm for control objectives that is capable of learning control policies significantly faster than related approaches.
arXiv Detail & Related papers (2022-05-09T17:09:51Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Reinforcement Learning Based Temporal Logic Control with Soft
Constraints Using Limit-deterministic Generalized Buchi Automata [0.0]
We study the control synthesis of motion planning subject to uncertainties.
The uncertainties are considered in robot motion and environment properties, giving rise to the probabilistic labeled Markov decision process (MDP)
arXiv Detail & Related papers (2021-01-25T18:09:11Z) - Reinforcement Learning Based Temporal Logic Control with Maximum
Probabilistic Satisfaction [5.337302350000984]
This paper presents a model-free reinforcement learning algorithm to synthesize a control policy.
The effectiveness of the RL-based control synthesis is demonstrated via simulation and experimental results.
arXiv Detail & Related papers (2020-10-14T03:49:16Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.