A quantum walk inspired model for distributed computing on arbitrary graphs
- URL: http://arxiv.org/abs/2502.21232v1
- Date: Fri, 28 Feb 2025 17:02:14 GMT
- Title: A quantum walk inspired model for distributed computing on arbitrary graphs
- Authors: Mathieu Roget, Giuseppe Di Molfetta,
- Abstract summary: A discrete time quantum walk is known to be the single-particle sector of a quantum cellular automaton.<n>This work introduces a model of distributed computation for arbitrary graphs inspired by quantum cellular automata.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A discrete time quantum walk is known to be the single-particle sector of a quantum cellular automaton. For a long time, these models have interested the community for their nice properties such as locality or translation invariance. This work introduces a model of distributed computation for arbitrary graphs inspired by quantum cellular automata. As a by-product, we show how this model can reproduce the dynamic of a quantum walk on graphs. In this context, we investigate the communication cost for two interaction schemes. Finally, we explain how this particular quantum walk can be applied to solve the search problem and present numerical results on different types of topologies.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - A quantum walk-based scheme for distributed searching on arbitrary
graphs [0.0]
A discrete time quantum walk is known to be the single-particle sector of a quantum cellular automaton.
This work introduces a new quantum walk-based searching scheme, designed to search nodes or edges on arbitrary graphs.
arXiv Detail & Related papers (2023-10-16T14:35:05Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
We propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Ego-graph based Quantum Graph Neural Network (egoQGNN)
egoQGNN implements the GNN theoretical framework using the tensor product and unity matrix representation, which greatly reduces the number of model parameters required.
The architecture is based on a novel mapping from real-world data to Hilbert space.
arXiv Detail & Related papers (2022-01-13T16:35:45Z) - Decoherence on Staggered Quantum Walks [0.0]
We show how to model decoherence inspired by percolation on staggered quantum walks.
We numerically analyze the effect of these decoherence models on the two-dimensional grid of $4$-cliques.
arXiv Detail & Related papers (2021-12-06T08:12:03Z) - How to Teach a Quantum Computer a Probability Distribution [0.0]
We explore teaching a coined discrete time quantum walk on a regular graph a probability distribution.
We also discuss some hardware and software concerns as well as immediate applications and the several connections to machine learning.
arXiv Detail & Related papers (2021-04-15T02:41:27Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Growing Random Graphs with Quantum Rules [0.0]
We propose two variations of a model to grow random graphs and trees based on continuous-time quantum walks on the graphs.
We investigate several rates of this spontaneous collapse for an individual quantum walker and for two non-interacting walkers.
arXiv Detail & Related papers (2020-04-03T01:51:43Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z) - Discrete-Time Quantum Walks on Oriented Graphs [0.0]
We define discrete-time quantum walks on arbitrary oriented graphs.
We introduce a parameter, called alpha, that quantifies the amount of orientation.
arXiv Detail & Related papers (2020-01-13T01:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.